[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

3D Bird’s-Eye-View Instance Segmentation

  • Conference paper
  • First Online:
Pattern Recognition (DAGM GCPR 2019)

Abstract

Recent deep learning models achieve impressive results on 3D scene analysis tasks by operating directly on unstructured point clouds. A lot of progress was made in the field of object classification and semantic segmentation. However, the task of instance segmentation is currently less explored. In this work, we present 3D-BEVIS (3D bird’s-eye-view instance segmentation), a deep learning framework for joint semantic- and instance-segmentation on 3D point clouds. Following the idea of previous proposal-free instance segmentation approaches, our model learns a feature embedding and groups the obtained feature space into semantic instances. Current point-based methods process local sub-parts of a full scene independently, followed by a heuristic merging step. However, to perform instance segmentation by clustering on a full scene, globally consistent features are required. Therefore, we propose to combine local point geometry with global context information using an intermediate bird’s-eye view representation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Intel RealSense Stereoscopic Depth Cameras. Computing Research Repository CoRR abs/1705.05548

    Google Scholar 

  2. Matterport: 3D models of interior spaces. http://matterport.com. Accessed 1 Aug 2019

  3. Armeni, I., et al.: 3D semantic parsing of large-scale indoor spaces. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  4. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) (2015)

    Google Scholar 

  5. Boulch, A., Guerry, J., Le Saux, B., Audebert, N.: SnapNet: 3D point cloud semantic labeling with 2D deep segmentation networks. Comput. Graph. (2017)

    Google Scholar 

  6. Brabandere, B.D., Neven, D., Gool, L.V.: Semantic instance segmentation with a discriminative loss function. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (2017)

    Google Scholar 

  7. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  8. Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3D object detection network for autonomous driving. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  9. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) (2002)

    Google Scholar 

  10. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  11. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: ScanNet: richly-annotated 3D reconstructions of indoor scenes. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  12. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: ScanNet benchmark challenge. http://kaldir.vc.in.tum.de/scannet_benchmark/ (2018). Accessed 19 May 2019

  13. Dai, A., Nießner, M.: 3DMV: joint 3D-multi-view prediction for 3D semantic scene segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 458–474. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_28

    Chapter  Google Scholar 

  14. Dai, J., He, K., Sun, J.: Instance-aware semantic segmentation via multi-task network cascades. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  15. Engelmann, F.: FabScan-Affordable 3D Laser Scanning of Physical Objects (2011)

    Google Scholar 

  16. Engelmann, F., Kontogianni, T., Leibe, B.: Dilated point convolutions: on the receptive field of point convolutions. computing research repository, CoRR abs/1907.12046 (2019)

    Google Scholar 

  17. Engelmann, F., Kontogianni, T., Schult, J., Leibe, B.: Know what your neighbors do: 3D semantic segmentation of point clouds. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11131, pp. 395–409. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11015-4_29

    Chapter  Google Scholar 

  18. Fathi, A., et al.: Semantic instance segmentation via deep metric learning. Computing research repository CoRR abs/1703.10277 (2017)

    Google Scholar 

  19. He, K., Gkioxari, G., Dollar, P., Girshick, R.B.: Mask R-CNN. In: International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  20. Hou, J., Dai, A., Nießner, M.: 3D-SIS: 3D semantic instance segmentation of RGB-D scans. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  21. Hsu, Y.C., Xu, Z., Kira, Z., Huang, J.: Learning to cluster for proposal-free instance segmentation. In: International Conference on Neural Networks (IJCNN) (2018)

    Google Scholar 

  22. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  23. Kong, S., Fowlkes, C.: Recurrent pixel embedding for instance grouping. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  24. Newell, A., Huang, Z., Deng, J.: Pixels to graphs by associative embedding. In: Neural Information Processing Systems (NIPS) (2017)

    Google Scholar 

  25. Pinheiro, P.O., Collobert, R., Dollar, P.: Learning to segment object candidates. In: Neural Information Processing Systems (NIPS) (2015)

    Google Scholar 

  26. Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J.: Frustum PointNets for 3D Object Detection from RGB-D Data. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  27. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  28. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: Neural Information Processing Systems (NIPS) (2017)

    Google Scholar 

  29. Rethage, D., Wald, J., Sturm, J., Navab, N., Tombari, F.: Fully-convolutional point networks for large-scale point clouds. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 625–640. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_37

    Chapter  Google Scholar 

  30. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  31. Shelhamer, E., Long, J., Darrell, T.: Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) (2017)

    Google Scholar 

  32. Simon, M., Milz, S., Amende, K., Gross, H.: Complex-YOLO: real-time 3D object detection on point clouds. Computing research repository CoRR abs/1803.06199 (2018)

    Google Scholar 

  33. Tatarchenko, M., Park, J., Koltun, V., Zhou, Q.Y.: Tangent convolutions for dense prediction in 3D. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  34. Wang, W., Yu, R., Huang, Q., Neumann, U.: SGPN: similarity group proposal network for 3D point cloud instance segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  35. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. Computing research repository CoRR abs/1801.07829 (2018)

    Google Scholar 

  36. Yi, L., Zhao, W., Wang, H., Sung, M., Guibas, L.J.: GSPN: generative shape proposal network for 3D instance segmentation in point cloud. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  37. Zhou, Y., Tuzel, O.: VoxelNet: end-to-end learning for point cloud based 3D object detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cathrin Elich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Elich, C., Engelmann, F., Kontogianni, T., Leibe, B. (2019). 3D Bird’s-Eye-View Instance Segmentation. In: Fink, G., Frintrop, S., Jiang, X. (eds) Pattern Recognition. DAGM GCPR 2019. Lecture Notes in Computer Science(), vol 11824. Springer, Cham. https://doi.org/10.1007/978-3-030-33676-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33676-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33675-2

  • Online ISBN: 978-3-030-33676-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics