Abstract
There is a significant need for various Intrusion Detection Systems (IDS) methods for packet behavior anomaly detection, due to the consistent exposure of packets to frequent intrusion threats. Thus, Packet Header Anomaly Detection (PHAD) considered as one of many significant approaches that is used for detecting threats on network packet. However, this approach still suffers from high generation of false alarm rate. This paper investigates a Normal Profile Updating Method (NPUM) for enhancing the PHAD based IDS model. This method updates normal profile of anomaly IDS using further processing of both the normal and abnormal data identified by anomaly detector. Simulation experiments and DARPA intrusion detection evaluation data sets are used for testing the proposed method. Results show that the proposed method can reduce the false positive alarms and improve the performance in terms of accuracy of detection. The major contributions of this research include the design of an enhanced PHAD-based IDS. This would contribute toward the enhanced IDSs to strengthen network security.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Buczak, A.L., Guven, E.: A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE Commun. Surv. Tutorials 18(2), 1153–1176 (2016)
Mahoney, M.V.: Network traffic anomaly detection based on packet bytes. In: Proceedings of the 2003 ACM Symposium on Applied Computing, pp. 346–350. ACM (2003)
Mahoney, M.V., Chan, P.K.: PHAD: packet header anomaly detection for identifying hostile network traffic (2001)
Aydın, M.A., Zaim, A.H., Ceylan, K.G.: A hybrid intrusion detection system design for computer network security. Comput. Electr. Eng. 35(3), 517–526 (2009)
Garg, A., Maheshwari, P.: PHAD: packet header anomaly detection. In: 2016 10th International Conference on Intelligent Systems and Control (ISCO), pp. 1–5. IEEE (2016)
Deka, R.K., Kalita, K.P., Bhattacharya, D.K., Kalita, J.K.: Network defense: approaches, methods and techniques. J. Netw. Comput. Appl. 57, 71–84 (2015)
Al-Safwani, N., Fazea, Y., Ibrahim, H.: ISCP: In-depth model for selecting critical security controls. Comput. Secur. 77, 565–577 (2018)
Elbasiony, R.M., Sallam, E.A., Eltobely, T.E., Fahmy, M.M.: A hybrid network intrusion detection framework based on random forests and weighted k-means. Ain Shams Eng. J. 4(4), 753–762 (2013)
Lee, K.-C., Chang, J., Chen, M.-S.: PAID: packet analysis for anomaly intrusion detection. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012, pp. 626–633. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68125-0_58
Shamsuddin, S.B., Woodward, M.E.: Modeling protocol-based packet header anomaly detector for network and host intrusion detection systems. In: Bao, F., Ling, S., Okamoto, T., Wang, H., Xing, C. (eds.) CANS 2007. LNCS, vol. 4856, pp. 209–227. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76969-9_14
Yassin, W., Udzir, N.I., Abdullah, A., Abdullah, M.T., Muda, Z., Zulzalil, H.: Packet header anomaly detection using statistical analysis. In: de la Puerta, J.G., et al. (eds.) International Joint Conference SOCO 2014-CISIS 2014-ICEUTE 2014. AISC, vol. 299, pp. 473–482. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07995-0_47
Kamarudin, M.H., Maple, C., Watson, T., Sohrabi, S.N.: A new unified intrusion anomaly detection in identifying unseen web attacks. Secur. Commun. Netw. 2017(2539034), 1–18 (2017)
Cao, X., Chen, B., Li, H., Fu, Y.: Packet header anomaly detection using Bayesian topic models (2016). http://eprint.iacr.org/2016/040.pdf
Mahboubian, M., Udzir, N.I.: A naturally inspired statistical intrusion detection model. Int. J. Comput. Theor. Eng. 5(3), 578 (2013)
Kamarudin, M.H., Maple, C., Watson, T., Sohrabi S.N.: Packet header intrusion detection with binary logistic regression approach in detecting R2L and U2R attacks. In: 2015 4th International Conference on Cyber Security, Cyber Warfare, and Digital Forensic, pp. 101–106 (2015)
Massachusetts Institute of Technology: DARPA intrusion detection scenario specific datasets. Lincoln Laboratory (1999). https://www.ll.mit.edu/ideval/data/1999data.html
Alsharafi, W.M., Omar, M.N.: A detector generating algorithm for intrusion detection inspired by AIS. ARPN J. Eng. Appl. Sci. 10(2) (2015). ISSN-1819-6608
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Alsharafi, W.M., Omar, M.N., Al-Majmar, N.A., Fazea, Y. (2020). Normal Profile Updating Method for Enhanced Packet Header Anomaly Detection. In: Saeed, F., Mohammed, F., Gazem, N. (eds) Emerging Trends in Intelligent Computing and Informatics. IRICT 2019. Advances in Intelligent Systems and Computing, vol 1073. Springer, Cham. https://doi.org/10.1007/978-3-030-33582-3_69
Download citation
DOI: https://doi.org/10.1007/978-3-030-33582-3_69
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-33581-6
Online ISBN: 978-3-030-33582-3
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)