Abstract
The paper departs from the general problem of knowledge integration and the basic strategies that can be adopted to confront this challenge. With the purpose of providing a sound meta-theoretical framework to facilitate knowledge conceptualization and integration, as well as assessment criteria to evaluate achievements regarding knowledge integration, the paper first reviews the previous work in the field of conceptual spaces. It subsequently gives an overview of structural tools and mechanisms for knowledge representation, recapped in the modal stratified bond model of global knowledge. On these groundings, a novel formalized representation of conceptual systems, structures, spaces and algebras is developed through a set of definitions which goes beyond the exploration of mental knowledge representation and the semantics of natural languages. These two components provide a sound framework for the development of the glossaLAB international project with respect to its two basic objectives, namely (i) facilitating knowledge integration in general and particularly in the context of the general study of information and systems; (ii) facilitating the assessment of the achievements as regards knowledge integration in interdisciplinary settings. An additional article tackles the solutions adopted to integrate these results in the elucidation of the conceptual network of the general study of information and systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adams, B., Raubal, M.: A metric conceptual space algebra. In: Hornsby, K.S., Claramunt, C., Denis, M., Ligozat, G. (eds.) COSIT 2009. LNCS, vol. 5756, pp. 51–68. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03832-7_4
Aerts, D., Gabora, L.: A state-context-property model of concepts and their combinations II: a Hilbert space representation. Kybernetes 34(1/2), 176–204 (2005)
Albert, D., Lukas, J. (eds.): Knowledge Spaces: Theories, Empirical Research. Applications. Lawrence Erlbaum Associates, Mahwah (1999)
Balzer, W., Moulines, C.U., Sneed, J.D.: An Architectonic for Science: The Structuralist Program. Reidel, Dordrecht (1987)
Barabási, A.-L.: Linked: The New Science of Networks. Perseus, Cambridge (2002)
Barrett, E. (ed.): Text, Context and Hypertext: Writing with and for the Computer. MIT Press, Cambridge (1988)
Bolt, J., Coecke, B., Genovese, F., Lewis, M., Marsden, D., Piedeleu, R.: Interacting conceptual spaces: grammatical composition of concepts. In: Kaipainen, M., Zenker, F., Hautamäki, A., Gärdenfors, P. (eds.) Conceptual Spaces: Elaborations and Applications, pp. 11–19. Springer, Cham (2017). https://doi.org/10.1007/978-3-030-12800-5_9
Burgin, M., de Vey Mestdagh, C.N.J.: Consistent structuring of inconsistent knowledge. J. Intell. Inf. Syst. 45(1), 5–28 (2015)
Burgin, M., Gladun, V.: Mathematical foundations of semantic networks theory. In: Demetrovics, J., Thalheim, B. (eds.) MFDBS 1989. LNCS, vol. 364, pp. 117–135. Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-51251-9_9
Burgin, M., Gorsky, D.P.: Towards the construction of a general theory of concept. In: The Opened Curtain, pp. 167–195. Oulder, San Francisco, Oxford (1991)
Burgin, M., Kuznetsov, V.: Introduction to Modern Exact Methodology of Science. International Science Foundation, Moscow (1994). (in Russian)
Burgin, M.: Logical varieties and covarieties. In: Methodological and Theoretical Problems of Mathematics and Information and Computer Sciences, Kiev, pp. 18–34 (1997). (in Russian)
Burgin, M.: Named sets as a basic tool in epistemology. Epistemologia, XVIII, 87–110 (1995)
Burgin, M.: Named sets in the semantic network theory. In: Knowledge - Dialog - Decision, pp. 43–47. Leningrad (1991). (in Russian)
Burgin, M.: Structural Reality. Nova Science Publishers, New York (2012)
Burgin, M.: Theory of Information: Fundamentality, Diversity and Unification. World Scientific Publishing, Singapore (2010)
Burgin, M.: Theory of Knowledge: Structures and Processes. World Scientific, New York/London/Singapore (2017)
Burgin, M.: Theory of Named Sets. Mathematics Research Developments. Nova Science, New York (2011)
Burgin, M.: Weighted e-spaces and epistemic information operators. Information 5(3), 357–388 (2014)
Carnap, R.: The Logical Syntax of Language. Humanities, New York (1937)
Cohen, B., Murphy, G.L.: Models of concepts. Cogn. Sci. 8(1), 27–58 (1984)
Díaz-Nafría, J.M., Burgin, M., Rodriguez-Bravo, B.: Knowledge structures and conceptual networks for evaluation of knowledge integration. In: Dodig-Crnkovic, G., Burgin, M. (eds.) Philosophy and Methodology of Information: The Study of Information in the Transdisciplinary Perspective, pp. 457–489. World Scientific, Singapore (2019)
Díaz-Nafría, J.M., Guarda, T., Coronel, I.: A network theoretical approach to assess knowledge integration in information studies. In: Rocha, Á., Guarda, T. (eds.) Smart Innovation, Systems and Technologies, vol. 94, pp. 360–371. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78605-6_31
Díaz-Nafría, J.M., et al.: glossaLAB: Co-creating Interdisciplinary Knowledge. In: Proceedings of the Second International Conference on Applied Informatics. Communications in Computer and Information Science (2019). [In Press]
Díaz-Nafría, J.M.: Cyber-subsidiarity: toward a global sustainable information society. In: Carayannis, E.G., et al. (eds.) Handbook of Cyber-Development, Cyber-Democracy, and Cyber-Defense, pp. 1–30. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-09069-6_39
Doignon, J.-P., Falmagne, J.-Cl.: Knowledge Spaces. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-58625-5
Fauconnier, G., Turner, M.: The Way We Think: Conceptual Blending and the Mind’s Hidden Complexities. Basic Books, New York (2002)
Frege, G.: Über Sinn und Bedeutung. Zeitschrift für Philosophie und philosophische Kritik 100, 25–50 (1892)
Gärdenfors, P., Löhndorf, S.: What is a domain? Dimensional structures vs- meronymic relations. Cogn. Linguist. 24, 437–456 (2013)
Gärdenfors, P.: Cognitive semantics and image schemas with embodied forces. In: Krois, J.M., Rosengren, M., Steidele, A., Westerkamp, D. (eds.) Embodiment in cognition and culture, pp. 57–76. Benjamins, Amsterdam (2007)
Gärdenfors, P.: Conceptual spaces as a framework for knowledge representation. Mind Matter 2(2), 9–27 (2004)
Gärdenfors, P.: Conceptual Spaces: On the Geometry of Thought. MIT Press, Cambridge (2000)
Gärdenfors, P.: Geometry of Meaning: Semantics Based on Conceptual Spaces. MIT Press, Cambridge (2014)
Gärdenfors, P.: Semantic Knowledge, Domains of Meaning and Conceptual Spaces. In: Meusburger, P., Werlen, B., Suarsana, L. (eds.) Knowledge and Action. Knowledge and Space, vol. 9. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-44588-5_12
Garrison, J.W.: Hintikka, Laudan and Newton: an interrogative model of scientific discovery. Synthese 74(2), 45–172 (1988)
Hampton, J.A.: Concepts and natural language. In: Concepts and Fuzzy Logic, pp. 233–258, MIT Press, Cambridge (2011)
Hempel, C.G.: Fundamentals of concept formation in empirical science. In: International Encyclopedia of Unified Science, vol. 2, no. 7. University of Chicago Press, Chicago (1952)
Jago, M.: Logical information and epistemic space. Synthese 167(2), 327–341 (2009)
Kuhn, T.: The Structure of Scientific Revolutions. The University of Chicago Press, Chicago (1970)
Lakatos, I.: The Methodology of Scientific Research Programmes. Cambridge University Press, Cambridge (1978)
Lewis, M., Lawry, J.: Hierarchical conceptual spaces for concept combination. Artif. Intell. 237, 204–227 (2016)
Losee, J.: A Historical Introduction to the Philosophy of Science. Oxford University Press, New York (2001)
Muyeba, M., Rybakov, V.: Knowledge Representation in Agent’s Logic with Uncertainty and Agent’s Interaction, Preprint in Computer Science, 1406.5495 [cs.LO] (2014). Electronic edition in: http://arXiv.org. Accessed 10 Aug 2019
Nielsen, J.: Hypertext and Hypermedia. Academic Press, New York (1990)
Osgood, C.E., Suci, G.J., Tannenbaum, P.H.: The Measurement of Meaning. University of Illinois Press, Urbana (1978)
Popper, K.R.: Objective Knowledge: An Evolutionary Approach. Oxford University Press, New York (1979)
Rao, V.S.: Theories of knowledge: Its Validity and its Sources. Sri Satguru Publications, Delhi (1998)
Rickard, J., Aisbett, J., Gibbon, G.: Reformulation of the theory of conceptual spaces. Inf. Sci. 177(21), 4539–4565 (2007)
Russell, B.: On denoting. Mind 14, 479–493 (1905)
Sowa, J.F.: Semantic networks. In: Encyclopedia of Artificial Intelligence. Wiley, New York (1987)
Suppe, F.: The Positivist Model of Scientific Theories, in Scientific Inquiry. Oxford University Press, New York (1999)
Suppes, P.: What is a scientific theory? In: Philosophy of Science Today, pp. 55–67. Basic Books, New York (1967)
Thagard, P.: Computational Philosophy of Science. A Bradford Book, Oxford (1988)
van Frassen, B.: The semantic approach to scientific theories. In: Sklar, L. (ed.) The Nature of Scientific Theory, pp. 175–194. Garland, New York (2000)
Zhuge, H.: The Knowledge Grid: Toward Cyber-Physical Society. World Scientific Publishing, Singapore (2012)
Zimmermann, R.E.: New Ethics Proved in Geometrical Order. Spinozist Reflections on Evolutionary Systems. Emergent Publications, Litchfield Parz (2010)
Acknowledgment
This contribution has been carried out under support of glossaLAB project, co-founded by the Universidad Estatal Península de Santa Elena, Ecuador, and an international consortium of academic institutions. The authors wish to dedicate this work to the memory of Charles François whose work represents an invaluable and everlasting contribution to the integration of knowledge.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Burgin, M., Díaz-Nafría, J.M. (2019). Introduction to the Mathematical Theory of Knowledge Conceptualization: Conceptual Systems and Structures. In: Florez, H., Leon, M., Diaz-Nafria, J., Belli, S. (eds) Applied Informatics. ICAI 2019. Communications in Computer and Information Science, vol 1051. Springer, Cham. https://doi.org/10.1007/978-3-030-32475-9_34
Download citation
DOI: https://doi.org/10.1007/978-3-030-32475-9_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-32474-2
Online ISBN: 978-3-030-32475-9
eBook Packages: Computer ScienceComputer Science (R0)