[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Rotational Alignment of IMU-camera Systems with 1-Point RANSAC

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11859))

Included in the following conference series:

  • 1951 Accesses

Abstract

In this paper we present a minimal solution for the rotational alignment of IMU-camera systems based on a homography formulation. The image correspondences between two views are related by homography when the motion of the camera can be effectively approximated as a pure rotation. By exploiting the rotational angles of the features obtained by e.g. the SIFT detector, we compute the rotational alignment of IMU-camera systems with only 1 feature correspondence. The novel minimal case solution allows us to cope with feature mismatches efficiently and robustly within a random sample consensus (RANSAC) scheme. Our method is evaluated on both synthetic and real scene data, demonstrating that our method is suited for the rotational alignment of IMU-camera systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    k-quantiles divide an ordered data set into k regular intervals.

References

  1. Barath, D.: Five-point fundamental matrix estimation for uncalibrated cameras. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 235–243 (2018)

    Google Scholar 

  2. Bender, D., Schikora, M., Sturm, J., Greniers, D.: Ins-camera calibration without ground control points. In: 2014 Sensor Data Fusion: Trends, Solutions, Applications (SDF), pp. 1–6 (2014)

    Google Scholar 

  3. Daniilidis, K.: Hand-eye calibration using dual quaternions. Int. J. Robot. Res. 18(3), 286–298 (1999)

    Article  Google Scholar 

  4. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  5. Fraundorfer, F., Tanskanen, P., Pollefeys, M.: A minimal case solution to the calibrated relative pose problem for the case of two known orientation angles. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 269–282. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_20

    Chapter  Google Scholar 

  6. Guan, B., Vasseur, P., Demonceaux, C., Fraundorfer, F.: Visual odometry using a homography formulation with decoupled rotation and translation estimation using minimal solutions. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 2320–2327 (2018)

    Google Scholar 

  7. Guan, B., Yu, Q., Fraundorfer, F.: Minimal solutions for the rotational alignment of imu-camera systems using homography constraints. Comput. Vis. Image Underst. 170, 79–91 (2018)

    Article  Google Scholar 

  8. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  9. Heller, J., Havlena, M., Pajdla, T.: Globally optimal hand-eye calibration using branch-and-bound. IEEE Trans. Pattern Anal. Mach. Intell. 38(5), 1027–1033 (2016)

    Article  Google Scholar 

  10. Horaud, R., Dornaika, F.: Hand-eye Calibration. Int. J. Robot. Res. 14(3), 195–210 (1995)

    Article  Google Scholar 

  11. Hwangbo, M., Kim, J.S., Kanade, T.: Gyro-aided feature tracking for a moving camera: fusion, auto-calibration and GPU implementation. Int. J. Robot. Res. 30(14), 1755–1774 (2011)

    Article  Google Scholar 

  12. Karpenko, A., Jacobs, D., Baek, J., Levoy, M.: Digital video stabilization and rolling shutter correction using gyroscopes. CSTR 1, 2 (2011)

    Google Scholar 

  13. Kelly, J., Sukhatme, G.S.: Visual-inertial sensor fusion: localization, mapping and sensor-to-sensor self-calibration. Int. J. Robot. Res. 30(1), 56–79 (2011)

    Article  Google Scholar 

  14. Kneip, L., Chli, M., Siegwart, R.Y.: Robust real-time visual odometry with a single camera and an IMU. In: Proceedings of the British Machine Vision Conference (2011)

    Google Scholar 

  15. Kukelova, Z., Bujnak, M., Pajdla, T.: Automatic generator of minimal problem solvers. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5304, pp. 302–315. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88690-7_23

    Chapter  Google Scholar 

  16. Kukelova, Z., Heller, J., Pajdla, T.: Hand-eye calibration without hand orientation measurement using minimal solution. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7727, pp. 576–589. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37447-0_44

    Chapter  Google Scholar 

  17. Lowe, D.G., Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  18. Mirzaei, F.M., Roumeliotis, S.I.: A Kalman filter-based algorithm for IMU-camera calibration: observability analysis and performance evaluation. IEEE Trans. Rob. 24(5), 1143–1156 (2008)

    Article  Google Scholar 

  19. Park, F.C., Martin, B.J.: Robot sensor calibration: solving ax = xb on the Euclidean group. IEEE Trans. Robot. Autom. 10(5), 717–721 (1994)

    Article  Google Scholar 

  20. Ruland, T., Pajdla, T., Krüger, L.: Globally optimal hand-eye calibration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1035–1042 (2012)

    Google Scholar 

  21. Saurer, O., Vasseur, P., Boutteau, R., Demonceaux, C., Pollefeys, M., Fraundorfer, F.: Homography based egomotion estimation with a common direction. IEEE Trans. Pattern Anal. Mach. Intell. 39, 327–341 (2016)

    Article  Google Scholar 

  22. Seo, Y., Choi, Y.J., Lee, S.W.: A branch-and-bound algorithm for globally optimal calibration of a camera-and-rotation-sensor system. In: Proceedings of the International Conference on Computer Vision, pp. 1173–1178 (2009)

    Google Scholar 

  23. Tsai, R.Y., Lenz, R.K.: A new technique for fully autonomous and efficient 3D robotics hand/eye calibration. IEEE Trans. Robot. Autom. 5(3), 345–358 (1989)

    Article  Google Scholar 

  24. Weiss, S., Achtelik, M.W., Chli, M., Siegwart, R.: Versatile distributed pose estimation and sensor self-calibration for an autonomous MAV. In: 2012 IEEE International Conference on Robotics and Automation, pp. 31–38 (2012)

    Google Scholar 

  25. Zhang, Z.Q.: Cameras and inertial/magnetic sensor units alignment calibration. IEEE Trans. Instrum. Meas. 65(6), 1495–1502 (2016)

    Article  Google Scholar 

  26. Zheng, Y., Kuang, Y., Sugimoto, S., Astrom, K., Okutomi, M.: Revisiting the PnP problem: a fast, general and optimal solution. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2344–2351 (2013)

    Google Scholar 

  27. Zhuang, H., Shiu, Y.C.: A noise tolerant algorithm for wrist-mounted robotic sensor calibration with or without sensor orientation measurement. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2, pp. 1095–1100 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ang Su .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guan, B., Su, A., Li, Z., Fraundorfer, F. (2019). Rotational Alignment of IMU-camera Systems with 1-Point RANSAC. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2019. Lecture Notes in Computer Science(), vol 11859. Springer, Cham. https://doi.org/10.1007/978-3-030-31726-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31726-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31725-6

  • Online ISBN: 978-3-030-31726-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics