[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

FollowMeUp Sports: New Benchmark for 2D Human Keypoint Recognition

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11859))

Included in the following conference series:

  • 2083 Accesses

Abstract

Human pose estimation has made significant advancement in recent years. However, the existing datasets are limited in their coverage of pose variety. In this paper, we introduce a novel benchmark “FollowMeUp Sports” that makes an important advance in terms of specific postures, self-occlusion and class balance, a contribution that we feel is required for future development in human body models. This comprehensive dataset was collected using an established taxonomy of over 200 standard workout activities with three different shot angles. The collected videos cover a wider variety of specific workout activities than previous datasets including push-up, squat and body moving near the ground with severe self-occlusion or occluded by some sport equipment and outfits. Given these rich images, we perform a detailed analysis of the leading human pose estimation approaches gaining insights for the success and failures of these methods.

Y. Huang, B. Sun, H. Kan and J. Zhuang—Equal contribution.

Y. Huang—The work was done at Keep Inc. The research was partially supported by the National Key Research and Development Program of China (2017YFB1002803).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Johnson, S., Everingham, M.: Clustered pose and nonlinear appearance models for human pose estimation. In: British Machine Vision Conference (BMVC), p. 5 (2010)

    Google Scholar 

  2. Wei, S.E., Ramakrishna, V., Kanade, T., Sheikh, Y.: Convolutional pose machines. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4724–4732 (2016)

    Google Scholar 

  3. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29

    Chapter  Google Scholar 

  4. Luvizon, D.C., Picard, D., Tabia, H.: 2D/3D pose estimation and action recognition using multitask deep learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5137–5146 (2018)

    Google Scholar 

  5. Chu, X., Ouyang, W.L., Li, H.S., Wang, X.G.: Structured feature learning for pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4715–4723 (2016)

    Google Scholar 

  6. Chu, X., Yang, W., Ouyang, W.L., Ma, C., Yuille, A.L., Wang, X.G.: Multi-context attention for human pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1831–1840 (2017)

    Google Scholar 

  7. Sun, K., Xiao, B., Liu, D., Wang, J.D.: Deep high-resolution representation learning for human pose estimation. arXiv preprint arXiv:1902.09212 (2019)

  8. He, K.M., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 2980–2988 (2017)

    Google Scholar 

  9. Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2D pose estimation using part affinity fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7291–7299 (2017)

    Google Scholar 

  10. Osokin, D.: Real-time 2D multi-person pose estimation on CPU: lightweight OpenPose. arXiv preprint arXiv:1811.12004 (2018)

  11. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  12. Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2D human pose estimation: new benchmark and state of the art analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3686–3693 (2014)

    Google Scholar 

  13. Andriluka, M., et al.: PoseTrack: a benchmark for human pose estimation and tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5167–5176 (2018)

    Google Scholar 

  14. Ferrari, V., Marin-Jimenez, M., Zisserman, A.: Progressive search space reduction for human pose estimation. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)

    Google Scholar 

  15. Eichner, M., Ferrari, V., Zurich, S.: Better appearance models for pictorial structures. In: British Machine Vision Conference, p. 5 (2009)

    Google Scholar 

  16. Tran, D., Forsyth, D.: Improved human parsing with a full relational model. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 227–240. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_17

    Chapter  Google Scholar 

  17. Wang, Y., Tran, D., Liao, Z.C.: Learning hierarchical poselets for human parsing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1705–1712 (2011)

    Google Scholar 

  18. Ramanan, D.: Learning to parse images of articulated objects. In: Neural Information Processing Systems (NIPS) (2006)

    Google Scholar 

  19. Alp Güler, Rı., Neverova, N., Kokkinos, I.: DensePose: dense human pose estimation in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7297–7306 (2018)

    Google Scholar 

  20. Pishchulin, L., et al.: DeepCut: joint subset partition and labeling for multi person pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4929–4937 (2016)

    Google Scholar 

  21. Ainsworth, B.E., et al.: 2011 compendium of physical activities: a second update of codes and MET values. Med. Sci. Sports Exerc. 43(8), 1575–1581 (2011)

    Article  Google Scholar 

  22. Fang, H.S., Xie, S.Q., Tai, Y.W., Lu, C.w.: RMPE: regional multi-person pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 2334–2343 (2017)

    Google Scholar 

  23. Papandreou, G., et al.: Towards accurate multi-person pose estimation in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4903–4911 (2017)

    Google Scholar 

  24. Xiao, B., Wu, H., Wei, Y.: Simple baselines for human pose estimation and tracking. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 472–487. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_29

    Chapter  Google Scholar 

  25. Chen, Y.L., Wang, Z.C., Peng, Y.X., Zhang, Z.Q., Yu, G., Sun, J.: Cascaded pyramid network for multi-person pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7103–7112 (2018)

    Google Scholar 

  26. Su, K., Yu, D.D., Xu, Z.Q., Geng, X., Wang, C.H.: Multi-person pose estimation with enhanced channel-wise and spatial information. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5674–5682 (2019)

    Google Scholar 

  27. Insafutdinov, E., Pishchulin, L., Andres, B., Andriluka, M., Schiele, B.: DeeperCut: a deeper, stronger, and faster multi-person pose estimation model. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 34–50. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_3

    Chapter  Google Scholar 

  28. Newell, A., Huang, Z.A., Deng, J.: Associative embedding: end-to-end learning for joint detection and grouping. In: Proceedings of the Neural Information Processing Systems (NIPS), pp. 2277–2287 (2017)

    Google Scholar 

  29. Papandreou, G., Zhu, T., Chen, L.-C., Gidaris, S., Tompson, J., Murphy, K.: PersonLab: person pose estimation and instance segmentation with a bottom-up, part-based, geometric embedding model. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 282–299. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_17

    Chapter  Google Scholar 

  30. Kreiss, S., Bertoni, L., Alahi, A.: PifPaf: composite fields for human pose estimation. arXiv preprint arXiv:1903.06593 (2019)

  31. Moon, G., Chang, J.Y., Lee, K.M.: PoseFix: model-agnostic general human pose refinement networkz. arXiv preprint arXiv:1812.03595 (2018)

  32. Raaj, Y., Idrees, H., Hidalgo, G., Sheikh, Y.: Efficient online multi-person 2D pose tracking with recurrent spatio-temporal affinity fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4620–4628 (2019)

    Google Scholar 

  33. Zhao, L., Peng, X., Tian, Y., Kapadia, M., Metaxas, D.N.: Semantic graph convolutional networks for 3D human pose regression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3425–3435 (2019)

    Google Scholar 

  34. Zhang, F., Zhu X.T., Ye, M.: Fast human pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3517–3526 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, Y., Sun, B., Kan, H., Zhuang, J., Qin, Z. (2019). FollowMeUp Sports: New Benchmark for 2D Human Keypoint Recognition. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2019. Lecture Notes in Computer Science(), vol 11859. Springer, Cham. https://doi.org/10.1007/978-3-030-31726-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31726-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31725-6

  • Online ISBN: 978-3-030-31726-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics