Abstract
This paper outlines two approaches—based on counterexample-guided abstraction refinement (CEGAR) and counterexample-guided inductive synthesis (CEGIS), respectively—to the automated synthesis of finite-state probabilistic models and programs. Our CEGAR approach iteratively partitions the design space starting from an abstraction of this space and refines this by a light-weight analysis of verification results. The CEGIS technique exploits critical subsystems as counterexamples to prune all programs behaving incorrectly on that input. We show the applicability of these synthesis techniques to sketching of probabilistic programs, controller synthesis of POMDPs, and software product lines.
This work has been supported by the DFG RTG 2236 “UnRAVeL”, the ERC Advanced Grant 787914 “FRAPPANT”, the Czech Science Foundation grant No. AUTODEV GA19-24397S, and the IT4Innovations excellence in science project No. LQ1602.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Note that \(\lnot \varphi \) is not a safety property, but the presented idea can be extended to liveness properties too.
- 2.
For some suitable measure of size.
References
Alur, R., Singh, R., Fisman, D., Solar-Lezama, A.: Search-based program synthesis. Commun. ACM 61(12), 84–93 (2018)
Aziz, A., Singhal, V., Balarin, F., Brayton, R.K., Sangiovanni-Vincentelli, A.L.: It usually works: the temporal logic of stochastic systems. In: Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp. 155–165. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60045-0_48
Baier, C., de Alfaro, L., Forejt, V., Kwiatkowska, M.: Model checking probabilistic systems. Handbook of Model Checking, pp. 963–999. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8_28
Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge (2008)
Bartocci, E., Grosu, R., Katsaros, P., Ramakrishnan, C.R., Smolka, S.A.: Model repair for probabilistic systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 326–340. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19835-9_30
Benini, L., Bogliolo, A., Paleologo, G.A., Micheli, G.D.: Policy optimization for dynamic power management. IEEE Trans. CAD Integr. Circuits Syst. 18(6), 813–833 (1999)
Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.P.: MODEST: a compositional modeling formalism for hard and softly timed systems. IEEE Trans. Softw. Eng. 32(10), 812–830 (2006)
Buccafurri, F., Eiter, T., Gottlob, G., Leone, N.: Enhancing model checking in verification by AI techniques. Artif. Intell. 112(1–2), 57–104 (1999)
Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.: JANI: quantitative model and tool interaction. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 151–168. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54580-5_9
Chasins, S., Phothilimthana, P.M.: Data-driven synthesis of full probabilistic programs. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017, Part I. LNCS, vol. 10426, pp. 279–304. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_14
Chatterjee, K., Chmelik, M., Davies, J.: A symbolic SAT-based algorithm for almost-sure reachability with small strategies in POMDPs. In: AAAI, pp. 3225–3232. AAAI Press (2016)
Chatterjee, K., Chmelik, M., Tracol, M.: What is decidable about partially observable Markov decision processes with \(\omega \)-regular objectives. J. Comput. Syst. Sci. 82(5), 878–911 (2016)
Chatzieleftheriou, G., Bonakdarpour, B., Katsaros, P., Smolka, S.A.: Abstract model repair. Log. Methods Comput. Sci. 11(3) (2015)
Chen, T., Hahn, E.M., Han, T., Kwiatkowska, M.Z., Qu, H., Zhang, L.: Model repair for Markov decision processes. In: TASE, pp. 85–92. IEEE (2013)
Chonev, V.: Reachability in augmented interval Markov chains. CoRR arXiv:1701.02996 (2017)
Chrszon, P., Dubslaff, C., Klüppelholz, S., Baier, C.: ProFeat: feature-oriented engineering for family-based probabilistic model checking. Formal Asp. Comput. 30(1), 45–75 (2018)
Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 154–169. Springer, Heidelberg (2000). https://doi.org/10.1007/10722167_15
Classen, A., Cordy, M., Heymans, P., Legay, A., Schobbens, P.: Model checking software product lines with SNIP. STTT 14(5), 589–612 (2012)
Cubuktepe, M., Jansen, N., Junges, S., Katoen, J.-P., Topcu, U.: Synthesis in pMDPs: a tale of 1001 parameters. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp. 160–176. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01090-4_10
Dehnert, C., Jansen, N., Wimmer, R., Ábrahám, E., Katoen, J.-P.: Fast debugging of PRISM models. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 146–162. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11936-6_11
Dehnert, C., Junges, S., Jansen, N., Corzilius, F., Volk, M., Bruintjes, H., Katoen, J.-P., Ábrahám, E.: PROPhESY: a PRObabilistic ParamEter SYnthesis tool. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 214–231. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_13
Gerasimou, S., Tamburrelli, G., Calinescu, R.: Search-based synthesis of probabilistic models for quality-of-service software engineering (T). In: ASE, pp. 319–330. IEEE Computer Society (2015)
Gulwani, S., Polozov, O., Singh, R.: Program synthesis. Found. Trends Program. Lang. 4(1–2), 1–119 (2017)
Junges, S., et al.: Finite-state controllers of POMDPs using parameter synthesis. In: UAI, pp. 519–529. AUAI Press (2018)
Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially observable stochastic domains. Artif. Intell. 101(1–2), 99–134 (1998)
Katoen, J.P.: The probabilistic model checking landscape. In: LICS, pp. 31–45. ACM (2016)
Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_47
Mao, H., Chen, Y., Jaeger, M., Nielsen, T.D., Larsen, K.G., Nielsen, B.: Learning deterministic probabilistic automata from a model checking perspective. Mach. Learn. 105(2), 255–299 (2016)
Meuleau, N., Kim, K., Kaelbling, L.P., Cassandra, A.R.: Solving POMDPs by searching the space of finite policies. In: UAI, pp. 417–426. Morgan Kaufmann (1999)
Morgan, C., McIver, A., Seidel, K.: Probabilistic predicate transformers. ACM Trans. Program. Lang. Syst. 18(3), 325–353 (1996)
Nori, A.V., Ozair, S., Rajamani, S.K., Vijaykeerthy, D.: Efficient synthesis of probabilistic programs. In: PLDI, pp. 208–217. ACM (2015)
Pathak, S., Ábrahám, E., Jansen, N., Tacchella, A., Katoen, J.-P.: A greedy approach for the efficient repair of stochastic models. In: Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 295–309. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17524-9_21
Rodrigues, G.N., et al.: Modeling and verification for probabilistic properties in software product lines. In: HASE, pp. 173–180. IEEE (2015)
Sesic, A., Dautovic, S., Malbasa, V.: Dynamic power management of a system with a two-priority request queue using probabilistic-model checking. IEEE Trans. CAD Integr. Circuits Syst. 27(2), 403–407 (2008)
Solar-Lezama, A.: Program sketching. STTT 15(5–6), 475–495 (2013)
Solar-Lezama, A., Rabbah, R.M., Bodík, R., Ebcioglu, K.: Programming by sketching for bit-streaming programs. In: PLDI, pp. 281–294. ACM (2005)
Češka, M., Hensel, C., Junges, S., Katoen, J.P.: Counterexample-driven synthesis for probabilistic program sketches. CoRR abs/1904.12371 (2019)
Češka, M., Jansen, N., Junges, S., Katoen, J.-P.: Shepherding hordes of Markov chains. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 172–190. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17465-1_10
Vlassis, N., Littman, M.L., Barber, D.: On the computational complexity of stochastic controller optimization in POMDPs. TOCT 4(4), 12:1–12:8 (2012)
Wang, J., Sun, J., Yuan, Q., Pang, J.: Learning probabilistic models for model checking: an evolutionary approach and an empirical study. STTT 20(6), 689–704 (2018)
Wimmer, R., Jansen, N., Ábrahám, E., Katoen, J., Becker, B.: Minimal counterexamples for linear-time probabilistic verification. Theor. Comput. Sci. 549, 61–100 (2014)
Wu, S., Smolka, S.A., Stark, E.W.: Composition and behaviors of probabilistic I/O automata. Theor. Comput. Sci. 176(1–2), 1–38 (1997)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Češka, M., Dehnert, C., Jansen, N., Junges, S., Katoen, JP. (2019). Model Repair Revamped. In: Bartocci, E., Cleaveland, R., Grosu, R., Sokolsky, O. (eds) From Reactive Systems to Cyber-Physical Systems. Lecture Notes in Computer Science(), vol 11500. Springer, Cham. https://doi.org/10.1007/978-3-030-31514-6_7
Download citation
DOI: https://doi.org/10.1007/978-3-030-31514-6_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-31513-9
Online ISBN: 978-3-030-31514-6
eBook Packages: Computer ScienceComputer Science (R0)