[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Multiscale Temporal Network for Video-Based Gait Recognition

  • Conference paper
  • First Online:
Biometric Recognition (CCBR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11818))

Included in the following conference series:

Abstract

Gait is a kind of advanced feature for human identification at a distance. It also contains rich temporal information. In the paper an innovative gait recognition model, Multiscale Temporal Network (MSTN), is designed to extract discriminative feature at multiple scales in the temporal domain. MSTN can build a temporal pyramid from four different temporal resolutions. That means the human body motion can be described from coarse to fine by the four pathways in the network. The method is verified on a popular databset, CASIA-B. The experimental results show that the proposed MSTN can observably improve the recognition rate and MSTN is a straightforward and effective solution. It also shows that there is great potential in gait feature extraction from the temporal domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 51.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ariyanto, G., Nixon, M.S.: Model-based 3D gait biometrics. In: International Joint Conference on Biometrics, pp. 1–7 (2011)

    Google Scholar 

  2. Chao, H., He, Y., Zhang, J., Feng, J.: Regarding gait as a set for cross-view gait recognition. In: AAAI, GaitSet (2019)

    Google Scholar 

  3. Du, T., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: IEEE International Conference on Computer Vision, pp. 4489–4497 (2015)

    Google Scholar 

  4. Feichtenhofer, C., Fan, H., Malik, J., He, K.: Slowfast networks for video recognition. arXiv:1812.03982 (2018)

  5. Feichtenhofer, C., Pinz, A., Zisserman, A.: Convolutional two-stream network fusion for video action recognition. In: Computer Vision & Pattern Recognition (2016)

    Google Scholar 

  6. Feng, Y., Li, Y., Luo, J.: Learning effective gait features using LSTM. In: International Conference on Pattern Recognition, pp. 325–330 (2017)

    Google Scholar 

  7. He, Y., Zhang, J., Shan, H., Wang, L.: Multi-task gans for view-specific feature learning in gait recognition. IEEE Trans. Inf. Forensics Secur. 14(1), 102–113 (2018)

    Article  Google Scholar 

  8. Hu, M., Wang, Y., Zhang, Z., Little, J.J., Huang, D.: View-invariant discriminative projection for multi-view gait-based human identification. IEEE Trans. Inf. Forensics Secur. 8(12), 2034–2045 (2013)

    Article  Google Scholar 

  9. Han, J., Bir, B.: Individual recognition using gait energy image. IEEE Trans. Pattern Anal. Mach. Intell. 28(2), 316 (2006)

    Article  Google Scholar 

  10. Kusakunniran, W., Wu, Q., Zhang, J., Li, H.: Support vector regression for multi-view gait recognition based on local motion feature selection. In: Computer Vision & Pattern Recognition (2010)

    Google Scholar 

  11. Kusakunniran, W., Qiang, W., Zhang, J., Li, H., Wang, L.: Recognizing gaits across views through correlated motion co-clustering. IEEE Trans. Image Process. 23(2), 696–709 (2014)

    Article  MathSciNet  Google Scholar 

  12. Makihara, Y., Sagawa, R., Mukaigawa, Y., Echigo, T., Yagi, Y.: Gait recognition using a view transformation model in the frequency domain. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 151–163. Springer, Heidelberg (2006). https://doi.org/10.1007/11744078_12

    Chapter  Google Scholar 

  13. Urtasun, R., Fua, P.: 3D tracking for gait characterization and recognition. In: IEEE International Conference on Automatic Face and Gesture Recognition, pp. 17–22 (2004)

    Google Scholar 

  14. Wang, C., Zhang, J., Pu, J., Yuan, X., Wang, L.: Chrono-gait image: a novel temporal template for gait recognition. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 257–270. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15549-9_19

    Chapter  Google Scholar 

  15. Wang, L., Xiong, Y., Zhe, W., Yu, Q., Van Gool, L.: Temporal segment networks for action recognition in videos. IEEE Trans. Pattern Anal. Mach. Intell. PP(99) (2017)

    Google Scholar 

  16. Wu, Z., Huang, Y., Wang, L., Wang, X., Tan, T.: A comprehensive study on cross-view gait based human identification with deep CNNs. IEEE Trans. Pattern Anal. Mach. Intell. 39(2), 209–226 (2017)

    Article  Google Scholar 

  17. Xing, X., Wang, K., Yan, T., Lv, Z.: Complete canonical correlation analysis with application to multi-view gait recognition. Pattern Recognit. 50(C), 107–117 (2016)

    Article  Google Scholar 

  18. Yu, S., Chen, H., Wang, Q., Shen, L., Huang, Y.: Invariant feature extraction for gait recognition using only one uniform model. Neurocomputing 239(C), 81–93 (2017)

    Article  Google Scholar 

  19. Yu, S., Tan, D., Tan, T.: A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition. In: International Conference on Pattern Recognition, pp. 441–444 (2006)

    Google Scholar 

  20. Zhang, Y., Huang, Y., Wang, L., Shiqi, Y.: A comprehensive study on gait biometrics using a joint CNN-based method. Pattern Recognit. 93(9), 228–236 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinhui Wu , Shiqi Yu or Yongzhen Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, X., Yu, S., Huang, Y. (2019). Multiscale Temporal Network for Video-Based Gait Recognition. In: Sun, Z., He, R., Feng, J., Shan, S., Guo, Z. (eds) Biometric Recognition. CCBR 2019. Lecture Notes in Computer Science(), vol 11818. Springer, Cham. https://doi.org/10.1007/978-3-030-31456-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31456-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31455-2

  • Online ISBN: 978-3-030-31456-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics