Abstract
Gait is a kind of advanced feature for human identification at a distance. It also contains rich temporal information. In the paper an innovative gait recognition model, Multiscale Temporal Network (MSTN), is designed to extract discriminative feature at multiple scales in the temporal domain. MSTN can build a temporal pyramid from four different temporal resolutions. That means the human body motion can be described from coarse to fine by the four pathways in the network. The method is verified on a popular databset, CASIA-B. The experimental results show that the proposed MSTN can observably improve the recognition rate and MSTN is a straightforward and effective solution. It also shows that there is great potential in gait feature extraction from the temporal domain.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ariyanto, G., Nixon, M.S.: Model-based 3D gait biometrics. In: International Joint Conference on Biometrics, pp. 1–7 (2011)
Chao, H., He, Y., Zhang, J., Feng, J.: Regarding gait as a set for cross-view gait recognition. In: AAAI, GaitSet (2019)
Du, T., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: IEEE International Conference on Computer Vision, pp. 4489–4497 (2015)
Feichtenhofer, C., Fan, H., Malik, J., He, K.: Slowfast networks for video recognition. arXiv:1812.03982 (2018)
Feichtenhofer, C., Pinz, A., Zisserman, A.: Convolutional two-stream network fusion for video action recognition. In: Computer Vision & Pattern Recognition (2016)
Feng, Y., Li, Y., Luo, J.: Learning effective gait features using LSTM. In: International Conference on Pattern Recognition, pp. 325–330 (2017)
He, Y., Zhang, J., Shan, H., Wang, L.: Multi-task gans for view-specific feature learning in gait recognition. IEEE Trans. Inf. Forensics Secur. 14(1), 102–113 (2018)
Hu, M., Wang, Y., Zhang, Z., Little, J.J., Huang, D.: View-invariant discriminative projection for multi-view gait-based human identification. IEEE Trans. Inf. Forensics Secur. 8(12), 2034–2045 (2013)
Han, J., Bir, B.: Individual recognition using gait energy image. IEEE Trans. Pattern Anal. Mach. Intell. 28(2), 316 (2006)
Kusakunniran, W., Wu, Q., Zhang, J., Li, H.: Support vector regression for multi-view gait recognition based on local motion feature selection. In: Computer Vision & Pattern Recognition (2010)
Kusakunniran, W., Qiang, W., Zhang, J., Li, H., Wang, L.: Recognizing gaits across views through correlated motion co-clustering. IEEE Trans. Image Process. 23(2), 696–709 (2014)
Makihara, Y., Sagawa, R., Mukaigawa, Y., Echigo, T., Yagi, Y.: Gait recognition using a view transformation model in the frequency domain. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 151–163. Springer, Heidelberg (2006). https://doi.org/10.1007/11744078_12
Urtasun, R., Fua, P.: 3D tracking for gait characterization and recognition. In: IEEE International Conference on Automatic Face and Gesture Recognition, pp. 17–22 (2004)
Wang, C., Zhang, J., Pu, J., Yuan, X., Wang, L.: Chrono-gait image: a novel temporal template for gait recognition. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 257–270. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15549-9_19
Wang, L., Xiong, Y., Zhe, W., Yu, Q., Van Gool, L.: Temporal segment networks for action recognition in videos. IEEE Trans. Pattern Anal. Mach. Intell. PP(99) (2017)
Wu, Z., Huang, Y., Wang, L., Wang, X., Tan, T.: A comprehensive study on cross-view gait based human identification with deep CNNs. IEEE Trans. Pattern Anal. Mach. Intell. 39(2), 209–226 (2017)
Xing, X., Wang, K., Yan, T., Lv, Z.: Complete canonical correlation analysis with application to multi-view gait recognition. Pattern Recognit. 50(C), 107–117 (2016)
Yu, S., Chen, H., Wang, Q., Shen, L., Huang, Y.: Invariant feature extraction for gait recognition using only one uniform model. Neurocomputing 239(C), 81–93 (2017)
Yu, S., Tan, D., Tan, T.: A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition. In: International Conference on Pattern Recognition, pp. 441–444 (2006)
Zhang, Y., Huang, Y., Wang, L., Shiqi, Y.: A comprehensive study on gait biometrics using a joint CNN-based method. Pattern Recognit. 93(9), 228–236 (2019)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Wu, X., Yu, S., Huang, Y. (2019). Multiscale Temporal Network for Video-Based Gait Recognition. In: Sun, Z., He, R., Feng, J., Shan, S., Guo, Z. (eds) Biometric Recognition. CCBR 2019. Lecture Notes in Computer Science(), vol 11818. Springer, Cham. https://doi.org/10.1007/978-3-030-31456-9_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-31456-9_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-31455-2
Online ISBN: 978-3-030-31456-9
eBook Packages: Computer ScienceComputer Science (R0)