[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

SDItg-Diff: Noisy Iris Localization Based on Statistical Denoising

  • Conference paper
  • First Online:
Biometric Recognition (CCBR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11818))

Included in the following conference series:

  • 1731 Accesses

Abstract

It is quite challenging to localize noisy iris. In order to improve the stability and accuracy of noisy iris localization, this paper presents a statistical denoising integral difference operator (SDItg-Diff). Firstly, we use the Itg-Diff operator to produce several candidate boundaries with large Itg-Diff values. Then, the Pauta criterion is used to exclude the severe outlier pixels on each candidate boundary and the SDItg-Diff indicator is calculated after noise removal. The boundary with the max SDItg-Diff indicator is taken as the final localization boundary. The experimental result shows that, compared with the Itg-Diff operator, the proposed method can achieve more stable localization on noisy iris images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 51.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Daugman, J.G.: High confidence visual recognition of persons by a test of statistical independence. IEEE Trans. Pattern Anal. Mach. Intell. 15(11), 1148–1161 (2002)

    Article  Google Scholar 

  2. Bowyer, K.W.: The results of the nice. II iris biometrics competition. Pattern Recogn. Lett. 33(8), 965–969 (2012)

    Article  Google Scholar 

  3. Cui, J., Wang, Y., Li, M., Sun, Z.: A fast and robust iris localization method based on texture segmentation. In: Proceedings of SPIE - The International Society for Optical Engineering, vol. 5404, pp. 401–408 (2004)

    Google Scholar 

  4. Proenca, H., Alexandre, L.A.: Iris recognition: an analysis of the aliasing problem in the iris normalization stage. In: International Conference on Computational Intelligence and Security (2009)

    Google Scholar 

  5. Bae, K., Noh, S., Kim, J.: Iris feature extraction using independent component analysis. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 838–844. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44887-X_97

    Chapter  Google Scholar 

  6. Rathgeb, C., Uhl, A.: Bit reliability-driven template matching in iris recognition. In: Fourth Pacific-rim Symposium on Image and Video Technology (2010)

    Google Scholar 

  7. Sankowski, W., Grabowski, K., Napieralska, M., Zubert, M., Napieralski, A.: Reliable algorithm for iris segmentation in eye image. Image Vis. Comput. 28(2), 231–237 (2010)

    Article  Google Scholar 

  8. Daugman, J.: High confidence visual recognition of persons by a test of statistical independence. IEEE Trans. Pattern Anal. Mach. Intell. 15, 1148–1161 (1993)

    Article  Google Scholar 

  9. Ryan, W.J., Woodard, D.L., Duchowski, A.T., Birchfield, S.T.: Adapting starburst for elliptical iris segmentation. In: 2008 IEEE Second International Conference on Biometrics: Theory, Applications and Systems, pp. 1–7, September 2008

    Google Scholar 

  10. McInerney, T.: Sketchsnakes: Sketch-line initialized snakes for efficient interactive medical image segmentation. Comput. Med. Imaging Graph. 32(5), 331–352 (2008)

    Article  Google Scholar 

  11. Daugman, J.: New methods in iris recognition. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 37(5), 1167–1175 (2007)

    Article  Google Scholar 

  12. He, Z., Tan, T., Sun, Z., Qiu, X.: Toward accurate and fast iris segmentation for iris biometrics. IEEE Trans. Pattern Anal. Mach. Intell. 31(9), 1670–1684 (2009)

    Article  Google Scholar 

  13. Chhikara, R.S.: The inverse gaussian distribution: theory, methodology, and applications. Appl. Stat. 39(2), 259 (1988)

    MathSciNet  Google Scholar 

  14. Shen, C., Bao, X., Tan, J., Liu, S., Liu, Z.: Two noise-robust axial scanning multi-image phase retrieval algorithms based on pauta criterion and smoothness constraint. Opt. Express 25(14), 16235 (2017)

    Article  Google Scholar 

  15. Proenca, H., Alexandre, L.A.: The nice. I: Noisy iris challenge evaluation - Part I. In: IEEE International Conference on Biometrics: Theory (2007)

    Google Scholar 

  16. Dong, W., Sun, Z., Tan, T.: Iris matching based on personalized weight map. IEEE Trans. Pattern Anal. Mach. Intell. 33(9), 1744–1757 (2011)

    Article  Google Scholar 

  17. Zhao, Z., Kumar, A.: An accurate iris segmentation framework under relaxed imaging constraints using total variation model. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 3828–3836, December 2015

    Google Scholar 

Download references

Acknowledgement

This work is supported by National Natural Science Funds of China, No. 11371081 and No. 61703088, the Doctoral Scientific Research Foundation of Liaoning Province, No.20170520326 and “the Fundamental Research Funds for the Central Universities”, N160503003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, X., Zhou, R., Meng, X., Wang, Q. (2019). SDItg-Diff: Noisy Iris Localization Based on Statistical Denoising. In: Sun, Z., He, R., Feng, J., Shan, S., Guo, Z. (eds) Biometric Recognition. CCBR 2019. Lecture Notes in Computer Science(), vol 11818. Springer, Cham. https://doi.org/10.1007/978-3-030-31456-9_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31456-9_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31455-2

  • Online ISBN: 978-3-030-31456-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics