Abstract
It is quite challenging to localize noisy iris. In order to improve the stability and accuracy of noisy iris localization, this paper presents a statistical denoising integral difference operator (SDItg-Diff). Firstly, we use the Itg-Diff operator to produce several candidate boundaries with large Itg-Diff values. Then, the Pauta criterion is used to exclude the severe outlier pixels on each candidate boundary and the SDItg-Diff indicator is calculated after noise removal. The boundary with the max SDItg-Diff indicator is taken as the final localization boundary. The experimental result shows that, compared with the Itg-Diff operator, the proposed method can achieve more stable localization on noisy iris images.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Daugman, J.G.: High confidence visual recognition of persons by a test of statistical independence. IEEE Trans. Pattern Anal. Mach. Intell. 15(11), 1148–1161 (2002)
Bowyer, K.W.: The results of the nice. II iris biometrics competition. Pattern Recogn. Lett. 33(8), 965–969 (2012)
Cui, J., Wang, Y., Li, M., Sun, Z.: A fast and robust iris localization method based on texture segmentation. In: Proceedings of SPIE - The International Society for Optical Engineering, vol. 5404, pp. 401–408 (2004)
Proenca, H., Alexandre, L.A.: Iris recognition: an analysis of the aliasing problem in the iris normalization stage. In: International Conference on Computational Intelligence and Security (2009)
Bae, K., Noh, S., Kim, J.: Iris feature extraction using independent component analysis. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 838–844. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44887-X_97
Rathgeb, C., Uhl, A.: Bit reliability-driven template matching in iris recognition. In: Fourth Pacific-rim Symposium on Image and Video Technology (2010)
Sankowski, W., Grabowski, K., Napieralska, M., Zubert, M., Napieralski, A.: Reliable algorithm for iris segmentation in eye image. Image Vis. Comput. 28(2), 231–237 (2010)
Daugman, J.: High confidence visual recognition of persons by a test of statistical independence. IEEE Trans. Pattern Anal. Mach. Intell. 15, 1148–1161 (1993)
Ryan, W.J., Woodard, D.L., Duchowski, A.T., Birchfield, S.T.: Adapting starburst for elliptical iris segmentation. In: 2008 IEEE Second International Conference on Biometrics: Theory, Applications and Systems, pp. 1–7, September 2008
McInerney, T.: Sketchsnakes: Sketch-line initialized snakes for efficient interactive medical image segmentation. Comput. Med. Imaging Graph. 32(5), 331–352 (2008)
Daugman, J.: New methods in iris recognition. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 37(5), 1167–1175 (2007)
He, Z., Tan, T., Sun, Z., Qiu, X.: Toward accurate and fast iris segmentation for iris biometrics. IEEE Trans. Pattern Anal. Mach. Intell. 31(9), 1670–1684 (2009)
Chhikara, R.S.: The inverse gaussian distribution: theory, methodology, and applications. Appl. Stat. 39(2), 259 (1988)
Shen, C., Bao, X., Tan, J., Liu, S., Liu, Z.: Two noise-robust axial scanning multi-image phase retrieval algorithms based on pauta criterion and smoothness constraint. Opt. Express 25(14), 16235 (2017)
Proenca, H., Alexandre, L.A.: The nice. I: Noisy iris challenge evaluation - Part I. In: IEEE International Conference on Biometrics: Theory (2007)
Dong, W., Sun, Z., Tan, T.: Iris matching based on personalized weight map. IEEE Trans. Pattern Anal. Mach. Intell. 33(9), 1744–1757 (2011)
Zhao, Z., Kumar, A.: An accurate iris segmentation framework under relaxed imaging constraints using total variation model. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 3828–3836, December 2015
Acknowledgement
This work is supported by National Natural Science Funds of China, No. 11371081 and No. 61703088, the Doctoral Scientific Research Foundation of Liaoning Province, No.20170520326 and “the Fundamental Research Funds for the Central Universities”, N160503003.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, X., Zhou, R., Meng, X., Wang, Q. (2019). SDItg-Diff: Noisy Iris Localization Based on Statistical Denoising. In: Sun, Z., He, R., Feng, J., Shan, S., Guo, Z. (eds) Biometric Recognition. CCBR 2019. Lecture Notes in Computer Science(), vol 11818. Springer, Cham. https://doi.org/10.1007/978-3-030-31456-9_40
Download citation
DOI: https://doi.org/10.1007/978-3-030-31456-9_40
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-31455-2
Online ISBN: 978-3-030-31456-9
eBook Packages: Computer ScienceComputer Science (R0)