Abstract
In this paper we develop a novel classification method for multibeam sonar images based on the Weyl transform. The texture descriptor based on Weyl coefficients describes effectively the multiscale correlation features appearing in the sonar images. Our classification approach combines the Weyl coefficients with statistical features that are commonly used in the analysis of seabed sonar images and captures the morphological variation and geoacoustic characteristics of the seafloor. We employ a neural network as a classifier. The proposed combined feature extraction method demonstrates better performance than the commonly used statistical methods in this application.
This work was supported in part by Major Project of Chinese National Programs for Fundamental Research and Development (No. 613317) and in part by the China Scholarship Council.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Gaida, T., Tengku, A.T., Snellen, M., Amiri-Simkooei, A., Van Dijk, T., Simons, D.: Geosciences 8, 455 (2018)
Montereale-Gavazzi, G., Roche, M., Lurton, X., Degrendele, K., Terseleer, N., Van Lancker, V.: Mar. Geophys. Res. 39, 229–247 (2018)
Diesing, M., Mitchell, P., Stephens, D.: ICES J. Mar. Sci. 73, 2425–2441 (2016)
Brown, C.J., Smith, S.J., Lawton, P., Anderson, J.T.: Estuarine, coastal and shelf. Science 92, 502–520 (2011)
Nguyen, T.K.: Seafloor classification with a multi-swath multi-beam echo sounder. Ph.D. thesis, Ecole nationale supérieure Mines-Télécom Atlantique, Nantes (2017)
Janowski, Ł., Tęgowski, J., Nowak, J.: Ocean. Hydrobiol. Stud. 47, 248–259 (2018)
Haralick, R.M., Shanmugam, K., Dinstein, I.H.: IEEE Trans. Syst. Man Cybern. 6, 610–621 (1973)
Qiu, Q., Thompson, A., Calderbank, R., Sapiro, G.: IEEE Trans. Signal Process. 64, 1844–1853 (2016)
Ahn, H.K., Qiu, Q., Bosch, E., Thompson, A., Robles, F.E., Sapiro, G., Warren, W.S., Calderbank, R.: Classifying pump-probe images of melanocytic lesions using the Weyl transform. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, Alberta, Canada. IEEE (2018)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: International Conference on Computer Vision and Pattern Recognition (CVPR 2005). IEEE Computer Society, San Diego (2005)
Marko, H., Matti, P.: IEEE Trans. Pattern Anal. Mach. Intell. 28, 657–662 (2006)
Howard, S.D., Calderbank, A.R., Moran, W.: J. Appl. Signal Process. 2006, 111 (2006)
Wilson, M.F., O’Connell, B., Brown, C., Guinan, J.C., Grehan, A.J.: Mar. Geodesy 30, 3–35 (2007)
Walbridge, S., Slocum, N., Pobuda, M., Wright, D.: Geosciences 8, 94 (2018)
Kursa, M.B., Rudnicki, W.R.: J. Stat. Softw. 36, 1–13 (2010)
Kongsberg Maritime. EM 2040 data sheet (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Zhao, T., Lazendić, S., Zhao, Y., Montereale-Gavazzi, G., Pižurica, A. (2020). Classification of Multibeam Sonar Image Using the Weyl Transform. In: Choraś, M., Choraś, R. (eds) Image Processing and Communications. IP&C 2019. Advances in Intelligent Systems and Computing, vol 1062. Springer, Cham. https://doi.org/10.1007/978-3-030-31254-1_25
Download citation
DOI: https://doi.org/10.1007/978-3-030-31254-1_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-31253-4
Online ISBN: 978-3-030-31254-1
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)