[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Classification of Multibeam Sonar Image Using the Weyl Transform

  • Conference paper
  • First Online:
Image Processing and Communications (IP&C 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1062))

Included in the following conference series:

  • 740 Accesses

Abstract

In this paper we develop a novel classification method for multibeam sonar images based on the Weyl transform. The texture descriptor based on Weyl coefficients describes effectively the multiscale correlation features appearing in the sonar images. Our classification approach combines the Weyl coefficients with statistical features that are commonly used in the analysis of seabed sonar images and captures the morphological variation and geoacoustic characteristics of the seafloor. We employ a neural network as a classifier. The proposed combined feature extraction method demonstrates better performance than the commonly used statistical methods in this application.

This work was supported in part by Major Project of Chinese National Programs for Fundamental Research and Development (No. 613317) and in part by the China Scholarship Council.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gaida, T., Tengku, A.T., Snellen, M., Amiri-Simkooei, A., Van Dijk, T., Simons, D.: Geosciences 8, 455 (2018)

    Article  Google Scholar 

  2. Montereale-Gavazzi, G., Roche, M., Lurton, X., Degrendele, K., Terseleer, N., Van Lancker, V.: Mar. Geophys. Res. 39, 229–247 (2018)

    Article  Google Scholar 

  3. Diesing, M., Mitchell, P., Stephens, D.: ICES J. Mar. Sci. 73, 2425–2441 (2016)

    Article  Google Scholar 

  4. Brown, C.J., Smith, S.J., Lawton, P., Anderson, J.T.: Estuarine, coastal and shelf. Science 92, 502–520 (2011)

    Google Scholar 

  5. Nguyen, T.K.: Seafloor classification with a multi-swath multi-beam echo sounder. Ph.D. thesis, Ecole nationale supérieure Mines-Télécom Atlantique, Nantes (2017)

    Google Scholar 

  6. Janowski, Ł., Tęgowski, J., Nowak, J.: Ocean. Hydrobiol. Stud. 47, 248–259 (2018)

    Article  Google Scholar 

  7. Haralick, R.M., Shanmugam, K., Dinstein, I.H.: IEEE Trans. Syst. Man Cybern. 6, 610–621 (1973)

    Google Scholar 

  8. Qiu, Q., Thompson, A., Calderbank, R., Sapiro, G.: IEEE Trans. Signal Process. 64, 1844–1853 (2016)

    Article  MathSciNet  Google Scholar 

  9. Ahn, H.K., Qiu, Q., Bosch, E., Thompson, A., Robles, F.E., Sapiro, G., Warren, W.S., Calderbank, R.: Classifying pump-probe images of melanocytic lesions using the Weyl transform. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, Alberta, Canada. IEEE (2018)

    Google Scholar 

  10. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: International Conference on Computer Vision and Pattern Recognition (CVPR 2005). IEEE Computer Society, San Diego (2005)

    Google Scholar 

  11. Marko, H., Matti, P.: IEEE Trans. Pattern Anal. Mach. Intell. 28, 657–662 (2006)

    Article  Google Scholar 

  12. Howard, S.D., Calderbank, A.R., Moran, W.: J. Appl. Signal Process. 2006, 111 (2006)

    Google Scholar 

  13. Wilson, M.F., O’Connell, B., Brown, C., Guinan, J.C., Grehan, A.J.: Mar. Geodesy 30, 3–35 (2007)

    Article  Google Scholar 

  14. Walbridge, S., Slocum, N., Pobuda, M., Wright, D.: Geosciences 8, 94 (2018)

    Article  Google Scholar 

  15. Kursa, M.B., Rudnicki, W.R.: J. Stat. Softw. 36, 1–13 (2010)

    Article  Google Scholar 

  16. Kongsberg Maritime. EM 2040 data sheet (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, T., Lazendić, S., Zhao, Y., Montereale-Gavazzi, G., Pižurica, A. (2020). Classification of Multibeam Sonar Image Using the Weyl Transform. In: Choraś, M., Choraś, R. (eds) Image Processing and Communications. IP&C 2019. Advances in Intelligent Systems and Computing, vol 1062. Springer, Cham. https://doi.org/10.1007/978-3-030-31254-1_25

Download citation

Publish with us

Policies and ethics