[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Private Trajectory Data Publication for Trajectory Classification

  • Conference paper
  • First Online:
Web Information Systems and Applications (WISA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11817))

Included in the following conference series:

  • 2205 Accesses

Abstract

Trajectory classification (TC), i.e., predicting the class labels of moving objects based on their trajectories and other features, has many important real-world applications. Private trajectory data publication is to anonymize trajectory data, which can be released to the public or third parties. In this paper, we study private trajectory publication for trajectory classification (PTPTC), which not only preserves the trajectory privacy, but also guarantees high TC accuracy. We propose a private trajectory data publishing framework for TC, which constructs an anonymous trajectory set for publication and use in data services to classify the anonymous trajectories. In order to build a “good” anonymous trajectory set (i.e., to guarantee a high TC accuracy), we propose two algorithms for constructing anonymous trajectory set, namely Anonymize-POI and Anonymize-FSP. Next, we employ Support Vector Machine (SVM) classifier to classify the anonymous trajectories. Finally, the experimental results show that our proposed algorithms not only preserve the trajectory privacy, but also guarantee a high TC accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abul, O., Bonchi, F., Nanni, M.: Never walk alone: uncertainty for anonymity in moving objects databases. In: ICDE, pp. 376–385 (2008)

    Google Scholar 

  2. Agrawal, R., Srikant, R.: Mining sequential patterns. In: ICDE, pp. 1–12 (1995)

    Google Scholar 

  3. Beresford, A.R., Stajano, F.: Location privacy in pervasive computing. IEEE Pervasive Comput. 2(1), 46–55 (2004)

    Article  Google Scholar 

  4. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 1–27 (2011)

    Article  Google Scholar 

  5. Chow, C.Y., Mokbel, M.F.: Privacy of spatial trajectories. In: Zheng, Y., Zhou, X. (eds.) Computing with Spatial Trajectories. Springer, New York (2011). https://doi.org/10.1007/978-1-4614-1629-6_4

    Chapter  Google Scholar 

  6. Fournier-Viger, P., Wu, C.-W., Gomariz, A., Tseng, V.S.: VMSP: efficient vertical mining of maximal sequential patterns. In: Sokolova, M., van Beek, P. (eds.) AI 2014. LNCS (LNAI), vol. 8436, pp. 83–94. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06483-3_8

    Chapter  Google Scholar 

  7. He, X., Cormode, G., Machanavajjhala, A., Procopiuc, C.M., Srivastava, D.: DPT: differentially private trajectory synthesis using hierarchical reference systems. In: VLDB, pp. 1154–1165 (2015)

    Article  Google Scholar 

  8. Lee, J.G., Han, J., Li, X.: TraClass: trajectory classification using hierarchical region-based and trajectory-based clustering. VLDB 1, 1081–1094 (2008)

    Google Scholar 

  9. Lee, J.G., Han, J., Li, X., Cheng, H.: Mining discriminative patterns for classifying trajectories on road networks. TKDE 23(5), 713–726 (2011)

    Google Scholar 

  10. Nergiz, M.E., Atzori, M., Saygin, Y.: Towards trajectory anonymization: a generalization-based approach. Trans. Data Privacy 2(1), 52–61 (2009)

    MathSciNet  Google Scholar 

  11. Palanisamy, B., Liu, L.: MobiMix: protecting location privacy with mix-zones over road networks. In: ICDE, pp. 494–505 (2011)

    Google Scholar 

  12. Pan, X., Meng, X., Xu, J.: Distortion-based anonymity for continuous queries in location-based mobile services. In: SIGSPTAIL, pp. 256–265 (2009)

    Google Scholar 

  13. Terrovitis, M., Mamoulis, N.: Privacy preservation in the publication of trajectories. In: MDM, pp. 65–72 (2008)

    Google Scholar 

  14. Wu, J., Ni, W., Zhang, S.: Generalization based privacy-preserving provenance publishing. In: Meng, X., Li, R., Wang, K., Niu, B., Wang, X., Zhao, G. (eds.) WISA 2018. LNCS, vol. 11242, pp. 287–299. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02934-0_27

    Chapter  Google Scholar 

  15. Xu, T., Cai, Y.: Exploring historical location data for anonymity preservation in location-based services. In: INFOCOM, pp. 547–555 (2008)

    Google Scholar 

  16. Xin, Y., Xie, Z.Q., Yang, J.: The privacy preserving method for dynamic trajectory releasing based on adaptive clustering. Inf. Sci. 378, 131–143 (2017)

    Article  Google Scholar 

  17. Yan, X.: CloSpan: mining closed sequential patterns in large datasets. In: SAIDM, pp. 166–177 (2003)

    Google Scholar 

  18. Yao, L., Wang, X., Wang, X., Hu, H.: Publishing sensitive trajectory data under enhanced l-diversity model. In: MDM (2019, to appear)

    Google Scholar 

  19. You, T.H., Peng, W.C., Lee, W.C.: Protecting moving trajectories with dummies. In: MDM, pp. 278–282 (2008)

    Google Scholar 

  20. He, Z., Gu, F., Zhao, C., Liu, X., Wu, J., Wang, J.: Conditional discriminative pattern mining. Inf. Sci. 375, 1–15 (2017)

    Article  Google Scholar 

  21. Zheng, Y.: Computing with Spatial Trajectories. Springer, New York (2011). https://doi.org/10.1007/978-1-4614-1629-6

    Book  Google Scholar 

  22. Zheng, Y.: Trajectory data mining: an overview. ACM Trans. Intell. Syst. Technol. 6, 29 (2015)

    Article  Google Scholar 

  23. Zheng, Y., Li, Q., Chen, Y., Xie, X., Ma, W.Y.: Understanding mobility based on GPS data. In: MOBIQUITOUS, pp. 312–321 (2008)

    Google Scholar 

  24. Zheng, Y., Liu, L., Wang, L., Xie, X.: Learning transportation mode from raw GPS data for geographic applications on the web. In: WWW (2008)

    Google Scholar 

  25. Zhu, H., Yang, X., Wang, B., Lee, W.C.: Range-based obstructed nearest neighbor queries. In: SIGMOD, pp. 2053–2068 (2016)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the Postdoctoral fund (2018M643307), Key R&D Program of Guangdong Province (2018B010107005, 2019B010120001), and the National Natural Science Foundation of China (Nos. 61532021, 61572122, U1736104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaijie Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, H., Yang, X., Wang, B., Wang, L., Lee, WC. (2019). Private Trajectory Data Publication for Trajectory Classification. In: Ni, W., Wang, X., Song, W., Li, Y. (eds) Web Information Systems and Applications. WISA 2019. Lecture Notes in Computer Science(), vol 11817. Springer, Cham. https://doi.org/10.1007/978-3-030-30952-7_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30952-7_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30951-0

  • Online ISBN: 978-3-030-30952-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics