[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

RDF Explorer: A Visual SPARQL Query Builder

  • Conference paper
  • First Online:
The Semantic Web – ISWC 2019 (ISWC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11778))

Included in the following conference series:

Abstract

Despite the growing popularity of knowledge graphs for managing diverse data at large scale, users who wish to pose expressive queries against such graphs are often expected to know (i) how to formulate queries in a language such as SPARQL, and (ii) how entities of interest are described in the graph. In this paper we propose a language that relaxes these expectations; the language’s operators are based on an interactive graph-based exploration that allows non-expert users to simultaneously navigate and query knowledge graphs; we compare the expressivity of this language with SPARQL. We then discuss an implementation of this language that we call RDF Explorer and discuss various desirable properties it has, such as avoiding interactions that lead to empty results. Through a user study over the Wikidata knowledge-graph, we show that users successfully complete more tasks with RDF Explorer than with the existing Wikidata Query Helper, while a usability questionnaire demonstrates that users generally prefer our tool and self-report lower levels of frustration and mental effort.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We do not consider blank nodes in triple patterns, which can be modeled as unprojected (aka. non-distinguished) query variables.

  2. 2.

    http://query.wikidata.org/.

  3. 3.

    Given that the first task results in a query with a single triple pattern, the results for queries and triple patterns are the same.

  4. 4.

    The value for \(t_{crit}\) is given by \(\alpha \) and the number of participants (\(n = 28\), giving \(n - 1 = 27\) degrees of freedom). See http://www.numeracy-bank.net/?q=t/stt/ptt/3.

  5. 5.

    The data were found to be normally distributed and there were no clear outliers; hence use of the paired t-test is considered valid. We also conducted a non-parametric Wilcoxon test to compare the users’ ability to perform the requested tasks using the different interfaces; the results indicate a p-value of \(0.001647 < 0.05\).

References

  1. Online data. In URL http://www.rdfexplorer.org/data

  2. Ambrus, O., Möller, K., Handschuh, S.: Konduit VQB: a visual query builder for SPARQL on the social semantic desktop. In: Visual Interfaces to the Social and Semantic Web (VISSW). ACM Press (2010)

    Google Scholar 

  3. Angles, R., Arenas, M., Barceló, P., Hogan, A., Reutter, J.L., Vrgoc, D.: Foundations of modern query languages for graph databases. ACM Comput. Surv. 50(5), 68:1–68:40 (2017)

    Article  Google Scholar 

  4. Araujo, S., Schwabe, D., Barbosa, S.: Experimenting with explorator: a direct manipulation generic RDF browser and querying tool. In: Visual Interfaces to the Social and the Semantic Web (VISSW 2009), Sanibel Island, Florida (2009)

    Google Scholar 

  5. Arias, M., Fernández, J.D., Martínez-Prieto, M.A., de la Fuente, P.: An empirical study of real-world SPARQL queries. In: Usage Analysis and the Web of Data (USEWOD) (2011)

    Google Scholar 

  6. Balis, B., Grabiec, T., Bubak, M.: Domain-driven visual query formulation over RDF data sets. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2013. LNCS, vol. 8384, pp. 293–301. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55224-3_28

    Chapter  Google Scholar 

  7. Bartolomeo, S.D., Pepe, G., Savo, D.F., Santarelli, V.: Sparqling: painlessly drawing SPARQL queries over graphol ontologies. In: International Workshop on Visualization and Interaction for Ontologies and Linked Data (VOILA), pp. 64–69 (2018)

    Google Scholar 

  8. Becker, C., Bizer, C.: Exploring the geospatial semantic web with DBpedia mobile. Web Semant. Sci. Serv. Agents World Wide Web 7(4), 278–286 (2009)

    Article  Google Scholar 

  9. Berners-Lee, T., et al.: Tabulator: exploring and analyzing linked data on the semantic web. In: Proceedings of the 3rd International Semantic Web User Interaction Workshop, vol. 2006, p. 159. Citeseer (2006)

    Google Scholar 

  10. Bhowmick, S.S., Choi, B., Li, C.: Graph querying meets HCI: state of the art and future directions. In: ACM International Conference on Management of Data, pp. 1731–1736. ACM (2017)

    Google Scholar 

  11. Bikakis, N., Sellis, T.: Exploration and visualization in the web of big linked data: a survey of the state of the art. arXiv preprint arXiv:1601.08059 (2016)

  12. Bonatti, P.A., Decker, S., Polleres, A., Presutti, V.: Knowledge graphs: new directions for knowledge representation on the semantic web. Dagstuhl Rep. 8(9), 29–111 (2018)

    Google Scholar 

  13. Čerāns, K., et al.: ViziQuer: a web-based tool for visual diagrammatic queries over RDF data. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 11155, pp. 158–163. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98192-5_30

    Chapter  Google Scholar 

  14. Clemmer, A., Davies, S.: Smeagol: a “specific-to-general” semantic web query interface paradigm for novices. In: Hameurlain, A., Liddle, S.W., Schewe, K.-D., Zhou, X. (eds.) DEXA 2011. LNCS, vol. 6860, pp. 288–302. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23088-2_21

    Chapter  Google Scholar 

  15. Dadzie, A.-S., Rowe, M.: Approaches to visualising linked data: a survey. Semant. Web 2(2), 89–124 (2011)

    Google Scholar 

  16. Grafkin, P., Mironov, M., Fellmann, M., Lantow, B., Sandkuhl, K., Smirnov, A.V.: Sparql query builders: overview and comparison. In: BIR Workshops (2016)

    Google Scholar 

  17. Haag, F., Lohmann, S., Siek, S., Ertl, T.: QueryVOWL: a visual query notation for linked data. In: Gandon, F., Guéret, C., Villata, S., Breslin, J., Faron-Zucker, C., Zimmermann, A. (eds.) ESWC 2015. LNCS, vol. 9341, pp. 387–402. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25639-9_51

    Chapter  Google Scholar 

  18. Hart, S.G., Staveland, L.E.: Development of NASA-TLX (Task Load Index): results of empirical and theoretical research. In: Advances in psychology, vol. 52, pp. 139–183. Elsevier (1988)

    Google Scholar 

  19. Harth, A.: Visinav: a system for visual search and navigation on web data. Web Semant. Sci. Serv. Agents World Wide Web 8(4), 348–354 (2010)

    Article  Google Scholar 

  20. Hastrup, T., Cyganiak, R., Bojars, U.: Browsing linked data with Fenfire (2008)

    Google Scholar 

  21. Hogenboom, F., Milea, V., Frasincar, F., Kaymak, U.: RDF-GL: a SPARQL-based graphical query language for RDF. In: Emergent Web Intelligence: Advanced Information Retrieval, pp. 87–116 (2010). https://doi.org/10.1007/978-1-84996-074-8_4

    Chapter  Google Scholar 

  22. Lehmann, J., et al.: Dbpedia - a large-scale, multilingual knowledge base extracted from wikipedia. Semant. Web 6(2), 167–195 (2015)

    Google Scholar 

  23. Malyshev, S., Krötzsch, M., González, L., Gonsior, J., Bielefeldt, A.: Getting the most out of wikidata: semantic technology usage in wikipedia’s knowledge graph. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11137, pp. 376–394. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00668-6_23

    Chapter  Google Scholar 

  24. McCarthy, E.L., Vandervalk, B.P., Wilkinson, M.: SPARQL assist language-neutral query composer. BMC Bioinf. 13(S–1), S2 (2012)

    Google Scholar 

  25. Munzner, T.: Visualization Analysis and Design. AK Peters/CRC Press, Boca Raton (2014)

    Book  Google Scholar 

  26. Pérez, J., Arenas, M., Gutiérrez, C.: Semantics and complexity of SPARQL. ACM Trans. Database Syst. 34(3), 16:1–16:45 (2009)

    Article  Google Scholar 

  27. Rietveld, L., Hoekstra, R.: The YASGUI family of SPARQL clients. Semant. Web 8(3), 373–383 (2017)

    Article  Google Scholar 

  28. Saleem, M., Ali, M.I., Hogan, A., Mehmood, Q., Ngomo, A.-C.N.: LSQ: the linked SPARQL queries dataset. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9367, pp. 261–269. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25010-6_15

    Chapter  Google Scholar 

  29. Sayers, C.: Node-centric rdf graph visualization. Mobile and Media Systems Laboratory, HP Labs (2004)

    Google Scholar 

  30. Schmachtenberg, M., Bizer, C., Paulheim, H.: Adoption of the linked data best practices in different topical domains. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 245–260. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11964-9_16

    Chapter  Google Scholar 

  31. Skjæveland, M.G.: Sgvizler: a javascript wrapper for easy visualization of SPARQL result sets. In: Simperl, E., et al. (eds.) ESWC 2012. LNCS, vol. 7540, pp. 361–365. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46641-4_27

    Chapter  Google Scholar 

  32. Smart, P.R., Russell, A., Braines, D., Kalfoglou, Y., Bao, J., Shadbolt, N.R.: A visual approach to semantic query design using a web-based graphical query designer. In: Gangemi, A., Euzenat, J. (eds.) EKAW 2008. LNCS (LNAI), vol. 5268, pp. 275–291. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87696-0_25

    Chapter  Google Scholar 

  33. Soylu, A., et al.: OptiqueVQS: a visual query system over ontologies for industry. Semant. Web 9(5), 627–660 (2018)

    Article  Google Scholar 

  34. Stadler, C., Lehmann, J., Höffner, K., Auer, S.: Linkedgeodata: a core for a web of spatial open data. Semant. Web 3(4), 333–354 (2012)

    Google Scholar 

  35. Valsecchi, F., Abrate, M., Bacciu, C., Tesconi, M., Marchetti, A.: DBpedia atlas: mapping the uncharted lands of linked data. In: LDOW@ WWW (2015)

    Google Scholar 

  36. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledge base. Commun. ACM 57(10), 78–85 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

Vargas and Buil-Aranda were supported by Fondecyt Iniciación Grant No. 11170714. Hogan was supported by Fondecyt Grant No. 1181896. Vargas, Buil-Aranda and Hogan were supported by the Millenium Institute for Foundational Research on Data (IMFD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aidan Hogan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vargas, H., Buil-Aranda, C., Hogan, A., López, C. (2019). RDF Explorer: A Visual SPARQL Query Builder. In: Ghidini, C., et al. The Semantic Web – ISWC 2019. ISWC 2019. Lecture Notes in Computer Science(), vol 11778. Springer, Cham. https://doi.org/10.1007/978-3-030-30793-6_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30793-6_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30792-9

  • Online ISBN: 978-3-030-30793-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics