Abstract
Despite the growing popularity of knowledge graphs for managing diverse data at large scale, users who wish to pose expressive queries against such graphs are often expected to know (i) how to formulate queries in a language such as SPARQL, and (ii) how entities of interest are described in the graph. In this paper we propose a language that relaxes these expectations; the language’s operators are based on an interactive graph-based exploration that allows non-expert users to simultaneously navigate and query knowledge graphs; we compare the expressivity of this language with SPARQL. We then discuss an implementation of this language that we call RDF Explorer and discuss various desirable properties it has, such as avoiding interactions that lead to empty results. Through a user study over the Wikidata knowledge-graph, we show that users successfully complete more tasks with RDF Explorer than with the existing Wikidata Query Helper, while a usability questionnaire demonstrates that users generally prefer our tool and self-report lower levels of frustration and mental effort.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We do not consider blank nodes in triple patterns, which can be modeled as unprojected (aka. non-distinguished) query variables.
- 2.
- 3.
Given that the first task results in a query with a single triple pattern, the results for queries and triple patterns are the same.
- 4.
The value for \(t_{crit}\) is given by \(\alpha \) and the number of participants (\(n = 28\), giving \(n - 1 = 27\) degrees of freedom). See http://www.numeracy-bank.net/?q=t/stt/ptt/3.
- 5.
The data were found to be normally distributed and there were no clear outliers; hence use of the paired t-test is considered valid. We also conducted a non-parametric Wilcoxon test to compare the users’ ability to perform the requested tasks using the different interfaces; the results indicate a p-value of \(0.001647 < 0.05\).
References
Online data. In URL http://www.rdfexplorer.org/data
Ambrus, O., Möller, K., Handschuh, S.: Konduit VQB: a visual query builder for SPARQL on the social semantic desktop. In: Visual Interfaces to the Social and Semantic Web (VISSW). ACM Press (2010)
Angles, R., Arenas, M., Barceló, P., Hogan, A., Reutter, J.L., Vrgoc, D.: Foundations of modern query languages for graph databases. ACM Comput. Surv. 50(5), 68:1–68:40 (2017)
Araujo, S., Schwabe, D., Barbosa, S.: Experimenting with explorator: a direct manipulation generic RDF browser and querying tool. In: Visual Interfaces to the Social and the Semantic Web (VISSW 2009), Sanibel Island, Florida (2009)
Arias, M., Fernández, J.D., Martínez-Prieto, M.A., de la Fuente, P.: An empirical study of real-world SPARQL queries. In: Usage Analysis and the Web of Data (USEWOD) (2011)
Balis, B., Grabiec, T., Bubak, M.: Domain-driven visual query formulation over RDF data sets. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2013. LNCS, vol. 8384, pp. 293–301. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55224-3_28
Bartolomeo, S.D., Pepe, G., Savo, D.F., Santarelli, V.: Sparqling: painlessly drawing SPARQL queries over graphol ontologies. In: International Workshop on Visualization and Interaction for Ontologies and Linked Data (VOILA), pp. 64–69 (2018)
Becker, C., Bizer, C.: Exploring the geospatial semantic web with DBpedia mobile. Web Semant. Sci. Serv. Agents World Wide Web 7(4), 278–286 (2009)
Berners-Lee, T., et al.: Tabulator: exploring and analyzing linked data on the semantic web. In: Proceedings of the 3rd International Semantic Web User Interaction Workshop, vol. 2006, p. 159. Citeseer (2006)
Bhowmick, S.S., Choi, B., Li, C.: Graph querying meets HCI: state of the art and future directions. In: ACM International Conference on Management of Data, pp. 1731–1736. ACM (2017)
Bikakis, N., Sellis, T.: Exploration and visualization in the web of big linked data: a survey of the state of the art. arXiv preprint arXiv:1601.08059 (2016)
Bonatti, P.A., Decker, S., Polleres, A., Presutti, V.: Knowledge graphs: new directions for knowledge representation on the semantic web. Dagstuhl Rep. 8(9), 29–111 (2018)
Čerāns, K., et al.: ViziQuer: a web-based tool for visual diagrammatic queries over RDF data. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 11155, pp. 158–163. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98192-5_30
Clemmer, A., Davies, S.: Smeagol: a “specific-to-general” semantic web query interface paradigm for novices. In: Hameurlain, A., Liddle, S.W., Schewe, K.-D., Zhou, X. (eds.) DEXA 2011. LNCS, vol. 6860, pp. 288–302. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23088-2_21
Dadzie, A.-S., Rowe, M.: Approaches to visualising linked data: a survey. Semant. Web 2(2), 89–124 (2011)
Grafkin, P., Mironov, M., Fellmann, M., Lantow, B., Sandkuhl, K., Smirnov, A.V.: Sparql query builders: overview and comparison. In: BIR Workshops (2016)
Haag, F., Lohmann, S., Siek, S., Ertl, T.: QueryVOWL: a visual query notation for linked data. In: Gandon, F., Guéret, C., Villata, S., Breslin, J., Faron-Zucker, C., Zimmermann, A. (eds.) ESWC 2015. LNCS, vol. 9341, pp. 387–402. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25639-9_51
Hart, S.G., Staveland, L.E.: Development of NASA-TLX (Task Load Index): results of empirical and theoretical research. In: Advances in psychology, vol. 52, pp. 139–183. Elsevier (1988)
Harth, A.: Visinav: a system for visual search and navigation on web data. Web Semant. Sci. Serv. Agents World Wide Web 8(4), 348–354 (2010)
Hastrup, T., Cyganiak, R., Bojars, U.: Browsing linked data with Fenfire (2008)
Hogenboom, F., Milea, V., Frasincar, F., Kaymak, U.: RDF-GL: a SPARQL-based graphical query language for RDF. In: Emergent Web Intelligence: Advanced Information Retrieval, pp. 87–116 (2010). https://doi.org/10.1007/978-1-84996-074-8_4
Lehmann, J., et al.: Dbpedia - a large-scale, multilingual knowledge base extracted from wikipedia. Semant. Web 6(2), 167–195 (2015)
Malyshev, S., Krötzsch, M., González, L., Gonsior, J., Bielefeldt, A.: Getting the most out of wikidata: semantic technology usage in wikipedia’s knowledge graph. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11137, pp. 376–394. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00668-6_23
McCarthy, E.L., Vandervalk, B.P., Wilkinson, M.: SPARQL assist language-neutral query composer. BMC Bioinf. 13(S–1), S2 (2012)
Munzner, T.: Visualization Analysis and Design. AK Peters/CRC Press, Boca Raton (2014)
Pérez, J., Arenas, M., Gutiérrez, C.: Semantics and complexity of SPARQL. ACM Trans. Database Syst. 34(3), 16:1–16:45 (2009)
Rietveld, L., Hoekstra, R.: The YASGUI family of SPARQL clients. Semant. Web 8(3), 373–383 (2017)
Saleem, M., Ali, M.I., Hogan, A., Mehmood, Q., Ngomo, A.-C.N.: LSQ: the linked SPARQL queries dataset. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9367, pp. 261–269. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25010-6_15
Sayers, C.: Node-centric rdf graph visualization. Mobile and Media Systems Laboratory, HP Labs (2004)
Schmachtenberg, M., Bizer, C., Paulheim, H.: Adoption of the linked data best practices in different topical domains. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 245–260. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11964-9_16
Skjæveland, M.G.: Sgvizler: a javascript wrapper for easy visualization of SPARQL result sets. In: Simperl, E., et al. (eds.) ESWC 2012. LNCS, vol. 7540, pp. 361–365. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46641-4_27
Smart, P.R., Russell, A., Braines, D., Kalfoglou, Y., Bao, J., Shadbolt, N.R.: A visual approach to semantic query design using a web-based graphical query designer. In: Gangemi, A., Euzenat, J. (eds.) EKAW 2008. LNCS (LNAI), vol. 5268, pp. 275–291. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87696-0_25
Soylu, A., et al.: OptiqueVQS: a visual query system over ontologies for industry. Semant. Web 9(5), 627–660 (2018)
Stadler, C., Lehmann, J., Höffner, K., Auer, S.: Linkedgeodata: a core for a web of spatial open data. Semant. Web 3(4), 333–354 (2012)
Valsecchi, F., Abrate, M., Bacciu, C., Tesconi, M., Marchetti, A.: DBpedia atlas: mapping the uncharted lands of linked data. In: LDOW@ WWW (2015)
Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledge base. Commun. ACM 57(10), 78–85 (2014)
Acknowledgements
Vargas and Buil-Aranda were supported by Fondecyt Iniciación Grant No. 11170714. Hogan was supported by Fondecyt Grant No. 1181896. Vargas, Buil-Aranda and Hogan were supported by the Millenium Institute for Foundational Research on Data (IMFD).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Vargas, H., Buil-Aranda, C., Hogan, A., López, C. (2019). RDF Explorer: A Visual SPARQL Query Builder. In: Ghidini, C., et al. The Semantic Web – ISWC 2019. ISWC 2019. Lecture Notes in Computer Science(), vol 11778. Springer, Cham. https://doi.org/10.1007/978-3-030-30793-6_37
Download citation
DOI: https://doi.org/10.1007/978-3-030-30793-6_37
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-30792-9
Online ISBN: 978-3-030-30793-6
eBook Packages: Computer ScienceComputer Science (R0)