Abstract
Over the last years, a number of Knowledge Graph (KG) based Question Answering (QA) systems have been developed. Consequently, the series of Question Answering Over Linked Data (QALD1–QALD9) challenges and other datasets have been proposed to evaluate these systems. However, the QA datasets contain a fixed number of natural language questions and do not allow users to select micro benchmarking samples of the questions tailored towards specific use-cases. We propose QaldGen, a framework for microbenchmarking of QA systems over KGs which is able to select customised question samples from existing QA datasets. The framework is flexible enough to select question samples of varying sizes and according to the user-defined criteria on the most important features to be considered for QA benchmarking. This is achieved using different clustering algorithms. We compare state-of-the-art QA systems over knowledge graphs by using different QA benchmarking samples. The observed results show that specialised micro-benchmarking is important to pinpoint the limitations of the various QA systems and its components.
Resource Type: Evaluation benchmarks or Methods
Repository: https://github.com/dice-group/qald-generator
License: GNU General Public License v3.0
K. Singh and M. Saleem—These two authors contributed equally as first author.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
Prefix dbr is bound to http://dbpedia.org/resource/.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
References
Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_52
Berant, J., Chou, A., Frostig, R., Liang, P.: Semantic parsing on freebase from question-answer pairs. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, EMNLP 2013, pp. 1533–1544. ACL (2013)
Bollacker, K.D., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: ACM SIGMOD, pp. 1247–1250 (2008)
Choi, K.-S., Mitamura, T., Vossen, P., Kim, J.-D., Ngomo, A.-C.N.: SIGIR 2017 workshop on open knowledge base and question answering (OKBQA 2017). In: Proceedings of the ACM SIGIR, pp. 1433–1434 (2017)
Derczynski, L., et al.: Analysis of named entity recognition and linking for tweets. Inf. Process. Manag. 51(2), 32–49 (2015)
Diefenbach, D., Both, A., Singh, K., Maret, P.: Towards a question answering system over the semantic web. arXiv preprint arXiv:1803.00832 (2018)
Dubey, M., Banerjee, D., Chaudhuri, D., Lehmann, J.: EARL: joint entity and relation linking for question answering over knowledge graphs. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11136, pp. 108–126. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00671-6_7
Ferragina, P., Scaiella, U.: TAGME: on-the-fly annotation of short text fragments (by Wikipedia entities). In: Proceedings of the 19th ACM Conference on Information and Knowledge Management, CIKM 2010, Toronto, Ontario, Canada, 26–30 October 2010, pp. 1625–1628. ACM (2010)
Höffner, K., Walter, S., Marx, E., Usbeck, R., Lehmann, J., Ngomo, A.N.: Survey on challenges of question answering in the semantic web. Semant. Web 8(6), 895–920 (2017)
Huang, X., Zhang, J., Li, D., Li, P.: Knowledge graph embedding based question answering. In: Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, pp. 105–113. ACM (2019)
Li, F., Jagadish, H.V.: Constructing an interactive natural language interface for relational databases. PVLDB 8(1), 73–84 (2014)
Loni, B.: A survey of state-of-the-art methods on question classification (2011)
Maheshwari, G., Trivedi, P., Lukovnikov, D., Chakraborty, N., Fischer, A., Lehmann, J.: Learning to rank query graphs for complex question answering over knowledge graphs. arXiv preprint arXiv:1811.01118 (2018)
Mazzeo, G.M., Zaniolo, C.: Answering controlled natural language questions on RDF knowledge bases. In: EDBT, pp. 608–611 (2016)
Mendes, P.N., Jakob, M., García-Silva, A., Bizer, C.: DBpedia spotlight: shedding light on the web of documents. In: Proceedings the 7th International Conference on Semantic Systems, I-SEMANTICS 2011, Graz, Austria, 7–9 September 2011, pp. 1–8. ACM (2011)
Moldovan, D., Paşca, M., Harabagiu, S., Surdeanu, M.: Performance issues and error analysis in an open-domain question answering system. ACM Trans. Inf. Syst. (TOIS) 21(2), 133–154 (2003)
Ngomo, N.: 9th challenge on question answering over linked data (QALD-9). Language 7:1
Sakor, A., et al.: Old is gold: linguistic driven approach for entity and relation linking of short text. In: NAACL 2019. ACL (2019, to appear)
Saleem, M., Ali, M.I., Hogan, A., Mehmood, Q., Ngomo, A.-C.N.: LSQ: the linked SPARQL queries dataset. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9367, pp. 261–269. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25010-6_15
Saleem, M., Dastjerdi, S.N., Usbeck, R., Ngomo, A.N.: Question answering over linked data: what is difficult to answer? What affects the F scores? In: Joint Proceedings of BLINK 2017: Co-Located with (ISWC 2017), Austria (2017)
Saleem, M., Mehmood, Q., Ngonga Ngomo, A.-C.: FEASIBLE: a feature-based SPARQL benchmark generation framework. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 52–69. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25007-6_4
Saleem, M., Stadler, C., Mehmood, Q., Lehmann, J., Ngomo, A.-C.N.: SQCFramework: SPARQL query containment benchmark generation framework. In: Proceedings of the Knowledge Capture Conference, p. 28. ACM (2017)
Shekarpour, S., Marx, E., Ngomo, A.N., Auer, S.: SINA: semantic interpretation of user queries for question answering on interlinked data. J. Web Sem. 30, 39–51 (2015)
Singh, K.: Towards dynamic composition of question answering pipelines. Ph.D. thesis, University of Bonn, Germany (2019)
Singh, K., Both, A., Sethupat, A., Shekarpour, S.: Frankenstein: a platform enabling reuse of question answering components. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 624–638. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_40
Singh, K., Lytra, I., Radhakrishna, A.S., Shekarpour, S., Vidal, M.-E., Lehmann, J.: No one is perfect: Analysing the performance of question answering components over the DBpedia knowledge graph. arXiv:1809.10044 (2018)
Singh, K., et al.: Why reinvent the wheel: let’s build question answering systems together. In: Web Conference, pp. 1247–1256 (2018)
Trivedi, P., Maheshwari, G., Dubey, M., Lehmann, J.: LC-QuAD: a corpus for complex question answering over knowledge graphs. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10588, pp. 210–218. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68204-4_22
Unger, C., et al.: Question answering over linked data (QALD-5). In: Working Notes of CLEF 2015 - Conference and Labs of the Evaluation forum, Toulouse, France, 8–11 September 2015. CEUR-WS.org (2015)
Usbeck, R., Hoffmann, M., Röder, M., Lehmann, J., Ngomo, A.N.: Using multi-label classification for improved question answering. CoRR (2017)
Usbeck, R., et al.: Benchmarking question answering systems. Semant. Web J. (2019)
Usbeck, R., et al.: GERBIL: general entity annotator benchmarking framework. In: WWW 2015, pp. 1133–1143 (2015)
Voorhees, E.M., Harman, D.K. (eds.): Proceedings of The Eighth Text REtrieval Conference, TREC 1999, Gaithersburg, Maryland, USA, 17–19 November 1999, volume Special Publication, 500-246. National Institute of Standards and Technology (NIST) (1999)
Vrandecic, D.: Wikidata: a new platform for collaborative data collection. In: Proceedings of the 21st World Wide Web Conference, WWW 2012, Lyon, France, 16–20 April 2012 (Companion Volume), pp. 1063–1064. ACM (2012)
Waitelonis, J., Jürges, H., Sack, H.: Remixing entity linking evaluation datasets for focused benchmarking. Semant. Web 10(2), 385–412 (2019)
Zafar, H., Napolitano, G., Lehmann, J.: Formal query generation for question answering over knowledge bases. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 714–728. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_46
Acknowledgments
This work has been supported by the project LIMBO (Grant no. 19F2029I), OPAL (no. 19F2028A), KnowGraphs (no. 860801), and SOLIDE (no. 13N14456)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Singh, K. et al. (2019). QaldGen: Towards Microbenchmarking of Question Answering Systems over Knowledge Graphs. In: Ghidini, C., et al. The Semantic Web – ISWC 2019. ISWC 2019. Lecture Notes in Computer Science(), vol 11779. Springer, Cham. https://doi.org/10.1007/978-3-030-30796-7_18
Download citation
DOI: https://doi.org/10.1007/978-3-030-30796-7_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-30795-0
Online ISBN: 978-3-030-30796-7
eBook Packages: Computer ScienceComputer Science (R0)