[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

QaldGen: Towards Microbenchmarking of Question Answering Systems over Knowledge Graphs

  • Conference paper
  • First Online:
The Semantic Web – ISWC 2019 (ISWC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11779))

Included in the following conference series:

Abstract

Over the last years, a number of Knowledge Graph (KG) based Question Answering (QA) systems have been developed. Consequently, the series of Question Answering Over Linked Data (QALD1–QALD9) challenges and other datasets have been proposed to evaluate these systems. However, the QA datasets contain a fixed number of natural language questions and do not allow users to select micro benchmarking samples of the questions tailored towards specific use-cases. We propose QaldGen, a framework for microbenchmarking of QA systems over KGs which is able to select customised question samples from existing QA datasets. The framework is flexible enough to select question samples of varying sizes and according to the user-defined criteria on the most important features to be considered for QA benchmarking. This is achieved using different clustering algorithms. We compare state-of-the-art QA systems over knowledge graphs by using different QA benchmarking samples. The observed results show that specialised micro-benchmarking is important to pinpoint the limitations of the various QA systems and its components.

Resource Type: Evaluation benchmarks or Methods

Repository: https://github.com/dice-group/qald-generator

License: GNU General Public License v3.0

K. Singh and M. Saleem—These two authors contributed equally as first author.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 55.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://qa.mpi-inf.mpg.de/comqa/.

  2. 2.

    Prefix dbr is bound to http://dbpedia.org/resource/.

  3. 3.

    http://gerbil-qa.aksw.org/gerbil/experiment?id=201903190000.

  4. 4.

    As reported by [27] and [7].

  5. 5.

    https://github.com/dice-group/NLIWOD.

  6. 6.

    http://frankenstein.qanary-qa.com.

  7. 7.

    https://github.com/dice-group/gerbil/wiki/Precision,-Recall-and-F1-measure.

  8. 8.

    https://github.com/dice-group/gerbil/wiki/QALD-Generation.

  9. 9.

    https://research.fb.com/downloads/babi/.

  10. 10.

    http://qald.aksw.org/index.php?x=home&q=1.

References

  1. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_52

    Chapter  Google Scholar 

  2. Berant, J., Chou, A., Frostig, R., Liang, P.: Semantic parsing on freebase from question-answer pairs. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, EMNLP 2013, pp. 1533–1544. ACL (2013)

    Google Scholar 

  3. Bollacker, K.D., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: ACM SIGMOD, pp. 1247–1250 (2008)

    Google Scholar 

  4. Choi, K.-S., Mitamura, T., Vossen, P., Kim, J.-D., Ngomo, A.-C.N.: SIGIR 2017 workshop on open knowledge base and question answering (OKBQA 2017). In: Proceedings of the ACM SIGIR, pp. 1433–1434 (2017)

    Google Scholar 

  5. Derczynski, L., et al.: Analysis of named entity recognition and linking for tweets. Inf. Process. Manag. 51(2), 32–49 (2015)

    Article  Google Scholar 

  6. Diefenbach, D., Both, A., Singh, K., Maret, P.: Towards a question answering system over the semantic web. arXiv preprint arXiv:1803.00832 (2018)

  7. Dubey, M., Banerjee, D., Chaudhuri, D., Lehmann, J.: EARL: joint entity and relation linking for question answering over knowledge graphs. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11136, pp. 108–126. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00671-6_7

    Chapter  Google Scholar 

  8. Ferragina, P., Scaiella, U.: TAGME: on-the-fly annotation of short text fragments (by Wikipedia entities). In: Proceedings of the 19th ACM Conference on Information and Knowledge Management, CIKM 2010, Toronto, Ontario, Canada, 26–30 October 2010, pp. 1625–1628. ACM (2010)

    Google Scholar 

  9. Höffner, K., Walter, S., Marx, E., Usbeck, R., Lehmann, J., Ngomo, A.N.: Survey on challenges of question answering in the semantic web. Semant. Web 8(6), 895–920 (2017)

    Article  Google Scholar 

  10. Huang, X., Zhang, J., Li, D., Li, P.: Knowledge graph embedding based question answering. In: Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, pp. 105–113. ACM (2019)

    Google Scholar 

  11. Li, F., Jagadish, H.V.: Constructing an interactive natural language interface for relational databases. PVLDB 8(1), 73–84 (2014)

    Google Scholar 

  12. Loni, B.: A survey of state-of-the-art methods on question classification (2011)

    Google Scholar 

  13. Maheshwari, G., Trivedi, P., Lukovnikov, D., Chakraborty, N., Fischer, A., Lehmann, J.: Learning to rank query graphs for complex question answering over knowledge graphs. arXiv preprint arXiv:1811.01118 (2018)

  14. Mazzeo, G.M., Zaniolo, C.: Answering controlled natural language questions on RDF knowledge bases. In: EDBT, pp. 608–611 (2016)

    Google Scholar 

  15. Mendes, P.N., Jakob, M., García-Silva, A., Bizer, C.: DBpedia spotlight: shedding light on the web of documents. In: Proceedings the 7th International Conference on Semantic Systems, I-SEMANTICS 2011, Graz, Austria, 7–9 September 2011, pp. 1–8. ACM (2011)

    Google Scholar 

  16. Moldovan, D., Paşca, M., Harabagiu, S., Surdeanu, M.: Performance issues and error analysis in an open-domain question answering system. ACM Trans. Inf. Syst. (TOIS) 21(2), 133–154 (2003)

    Article  Google Scholar 

  17. Ngomo, N.: 9th challenge on question answering over linked data (QALD-9). Language 7:1

    Google Scholar 

  18. Sakor, A., et al.: Old is gold: linguistic driven approach for entity and relation linking of short text. In: NAACL 2019. ACL (2019, to appear)

    Google Scholar 

  19. Saleem, M., Ali, M.I., Hogan, A., Mehmood, Q., Ngomo, A.-C.N.: LSQ: the linked SPARQL queries dataset. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9367, pp. 261–269. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25010-6_15

    Chapter  Google Scholar 

  20. Saleem, M., Dastjerdi, S.N., Usbeck, R., Ngomo, A.N.: Question answering over linked data: what is difficult to answer? What affects the F scores? In: Joint Proceedings of BLINK 2017: Co-Located with (ISWC 2017), Austria (2017)

    Google Scholar 

  21. Saleem, M., Mehmood, Q., Ngonga Ngomo, A.-C.: FEASIBLE: a feature-based SPARQL benchmark generation framework. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 52–69. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25007-6_4

    Chapter  Google Scholar 

  22. Saleem, M., Stadler, C., Mehmood, Q., Lehmann, J., Ngomo, A.-C.N.: SQCFramework: SPARQL query containment benchmark generation framework. In: Proceedings of the Knowledge Capture Conference, p. 28. ACM (2017)

    Google Scholar 

  23. Shekarpour, S., Marx, E., Ngomo, A.N., Auer, S.: SINA: semantic interpretation of user queries for question answering on interlinked data. J. Web Sem. 30, 39–51 (2015)

    Article  Google Scholar 

  24. Singh, K.: Towards dynamic composition of question answering pipelines. Ph.D. thesis, University of Bonn, Germany (2019)

    Google Scholar 

  25. Singh, K., Both, A., Sethupat, A., Shekarpour, S.: Frankenstein: a platform enabling reuse of question answering components. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 624–638. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_40

    Chapter  Google Scholar 

  26. Singh, K., Lytra, I., Radhakrishna, A.S., Shekarpour, S., Vidal, M.-E., Lehmann, J.: No one is perfect: Analysing the performance of question answering components over the DBpedia knowledge graph. arXiv:1809.10044 (2018)

  27. Singh, K., et al.: Why reinvent the wheel: let’s build question answering systems together. In: Web Conference, pp. 1247–1256 (2018)

    Google Scholar 

  28. Trivedi, P., Maheshwari, G., Dubey, M., Lehmann, J.: LC-QuAD: a corpus for complex question answering over knowledge graphs. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10588, pp. 210–218. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68204-4_22

    Chapter  Google Scholar 

  29. Unger, C., et al.: Question answering over linked data (QALD-5). In: Working Notes of CLEF 2015 - Conference and Labs of the Evaluation forum, Toulouse, France, 8–11 September 2015. CEUR-WS.org (2015)

    Google Scholar 

  30. Usbeck, R., Hoffmann, M., Röder, M., Lehmann, J., Ngomo, A.N.: Using multi-label classification for improved question answering. CoRR (2017)

    Google Scholar 

  31. Usbeck, R., et al.: Benchmarking question answering systems. Semant. Web J. (2019)

    Google Scholar 

  32. Usbeck, R., et al.: GERBIL: general entity annotator benchmarking framework. In: WWW 2015, pp. 1133–1143 (2015)

    Google Scholar 

  33. Voorhees, E.M., Harman, D.K. (eds.): Proceedings of The Eighth Text REtrieval Conference, TREC 1999, Gaithersburg, Maryland, USA, 17–19 November 1999, volume Special Publication, 500-246. National Institute of Standards and Technology (NIST) (1999)

    Google Scholar 

  34. Vrandecic, D.: Wikidata: a new platform for collaborative data collection. In: Proceedings of the 21st World Wide Web Conference, WWW 2012, Lyon, France, 16–20 April 2012 (Companion Volume), pp. 1063–1064. ACM (2012)

    Google Scholar 

  35. Waitelonis, J., Jürges, H., Sack, H.: Remixing entity linking evaluation datasets for focused benchmarking. Semant. Web 10(2), 385–412 (2019)

    Article  Google Scholar 

  36. Zafar, H., Napolitano, G., Lehmann, J.: Formal query generation for question answering over knowledge bases. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 714–728. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_46

    Chapter  Google Scholar 

Download references

Acknowledgments

This work has been supported by the project LIMBO (Grant no. 19F2029I), OPAL (no. 19F2028A), KnowGraphs (no. 860801), and SOLIDE (no. 13N14456)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuldeep Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, K. et al. (2019). QaldGen: Towards Microbenchmarking of Question Answering Systems over Knowledge Graphs. In: Ghidini, C., et al. The Semantic Web – ISWC 2019. ISWC 2019. Lecture Notes in Computer Science(), vol 11779. Springer, Cham. https://doi.org/10.1007/978-3-030-30796-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30796-7_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30795-0

  • Online ISBN: 978-3-030-30796-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics