[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Fusion of Visual and Anamnestic Data for the Classification of Skin Lesions with Deep Learning

  • Conference paper
  • First Online:
New Trends in Image Analysis and Processing – ICIAP 2019 (ICIAP 2019)

Abstract

Early diagnosis of skin lesions is essential for the positive outcome of the disease, which can only be resolved with surgical treatment. In this manuscript, a deep learning method is proposed for the classification of cutaneous lesions based on their visual appearance and on the patient’s anamnestic data. These include age and gender of the patient and position of the lesion. The classifier discriminates between benign and malignant lesions, mimicking a typical procedure in dermatological diagnostics. Good preliminary results on the ISIC Dataset demonstrate the importance of the information fusion process, which significantly improves the classification accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 47.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 59.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://isic-archive.com/.

References

  1. He, K., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  2. Chen, L.C., et al.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)

  3. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  4. Andreini, P., Bonechi, S., Bianchini, M., Mecocci, A., Scarselli, F.: A deep learning approach to bacterial colony segmentation. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds.) ICANN 2018. LNCS, vol. 11141, pp. 522–533. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01424-7_51

    Chapter  Google Scholar 

  5. Rossi, A., et al.: Analysis of brain NMR images for age estimation with deep learning

    Google Scholar 

  6. Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115 (2017)

    Article  Google Scholar 

  7. Yap, J., Yolland, W., Tschandl, P.: Multimodal skin lesion classification using deep learning. Exp. Dermatol. 27(11), 1261–1267 (2018)

    Article  Google Scholar 

  8. Leiter, U., Eigentler, T., Garbe, C.: Epidemiology of skin cancer. Adv. Exp. Med. Biol. 810, 120–140 (2014)

    Google Scholar 

  9. Apalla, Z., et al.: Skin cancer: epidemiology, disease burden, pathophysiology, diagnosis, and therapeutic approaches. Dermatol. Ther. 7(1), 5–19 (2017)

    Article  Google Scholar 

  10. Paolino, G., et al.: Histology of non-melanoma skin cancers: an update. Biomedicines 5(4), 71 (2017)

    Article  Google Scholar 

  11. Apalla, Z., et al.: Epidemiological trends in skin cancer. Dermatol. Pract. Conceptual 7(2), 1 (2017)

    Google Scholar 

  12. Rastrelli, M., et al.: Melanoma: epidemiology, risk factors, pathogenesis, diagnosis and classification. Vivo 28(6), 1005–1011 (2014)

    Google Scholar 

  13. Schadendorf, D., Hauschild, A.: Melanoma in 2013: melanoma—the run of success continues. Nat. Rev. Clin. Oncol. 11(2014), 75–76 (2013)

    Google Scholar 

  14. Globocan. https://gco.iarc.fr/. Accessed 06 June 2019

  15. Matthews, N.H., et al.: Epidemiology of melanoma (2017)

    Google Scholar 

  16. Domingues, B., et al.: Melanoma treatment in review. ImmunoTargets Ther. 7, 35 (2018)

    Article  Google Scholar 

  17. Gandini, S., et al.: Meta-analysis of risk factors for cutaneous melanoma: II. Sun exposure. Eur. J. Cancer 41(1), 45–60 (2005)

    Article  Google Scholar 

  18. Codella, N.C., et al.: Skin lesion analysis toward melanoma detection: a challenge at the 2017 International Symposium on Biomedical Imaging (ISBI), hosted by ISIC. In: 15th International Symposium on Biomedical Imaging, pp. 168–172. IEEE (2018)

    Google Scholar 

  19. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. (IJCV) 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  20. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  21. Tognetti, L., et al.: An integrated clinical-dermoscopic risk scoring system for the differentiation between early melanoma and atypical nevi: the iDScore. J. Eur. Acad. Dermatol. Venereology 32(12), 2162–2170 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Andreini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bonechi, S. et al. (2019). Fusion of Visual and Anamnestic Data for the Classification of Skin Lesions with Deep Learning. In: Cristani, M., Prati, A., Lanz, O., Messelodi, S., Sebe, N. (eds) New Trends in Image Analysis and Processing – ICIAP 2019. ICIAP 2019. Lecture Notes in Computer Science(), vol 11808. Springer, Cham. https://doi.org/10.1007/978-3-030-30754-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30754-7_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30753-0

  • Online ISBN: 978-3-030-30754-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics