[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Secure and Fast Decision Tree Evaluation on Outsourced Cloud Data

  • Conference paper
  • First Online:
Machine Learning for Cyber Security (ML4CS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11806))

Included in the following conference series:

Abstract

Decision trees are famous machine learning classifiers which have been widely used in many areas, such as healthcare, text classification and remote diagnostics, etc. The service providers usually host a decision tree model on the cloud server and provide some classification service for clients to use such a model remotely. In such a scenario, the model is a valuable asset to the cloud which should not be disclosed to the clients, while the query data and classification results are private to the client. To solve such a problem, we propose several building blocks, i.e., secure comparison and secure polynomial calculation, in a two-cloud model. Based on these building blocks, we design a privacy-preserving decision tree evaluation scheme. Compared with the most recent works, our scheme can fully protect the tree model and clients’ data privacy simultaneously. Besides, our scheme also supports offline service users which is essential to the system’s scalability. Moreover, through theoretical analysis and real-world experimental test, it is oblivious that our scheme is quite efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    UC Irvine Machine Learning Repository https://archive.ics.uci.edu/ml/datasets.htm.

References

  1. The health insurance portability and accountability act of privacy and security rules. http://www.hhs.gov/ocr/privacy

  2. Singh, A., Guttag, J.V.: A comparison of non-symmetric entropy-based classification trees and support vector machine for cardiovascular risk stratification, pp. 79–82 (2011)

    Google Scholar 

  3. Azar, A.T., El-Metwally, S.M.: Decision tree classifiers for automated medical diagnosis. Neural Comput. Appl. 23(23), 2387–2403 (2013)

    Article  Google Scholar 

  4. Koh, H.C., Tan, W.C., Goh, C.P.: A two-step method to construct credit scoring models with data mining techniques. Int. J. Bus. Inf. 1(1), 96–118 (2006)

    Google Scholar 

  5. Rago, A., Marcos, C., Diaz-Pace, J.A.: Using semantic roles to improve text classification in the requirements domain. Lang. Resour. Eval. 52(3), 801–837 (2018)

    Article  Google Scholar 

  6. Lindell, Y., Pinkas, B.: Privacy preserving data mining. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 36–54. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6_3

    Chapter  Google Scholar 

  7. Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: ACM SIGMOD Record, vol. 29, pp. 439–450. ACM (2000)

    Google Scholar 

  8. Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine learning classification over encrypted data. In NDSS, vol. 4324, p. 4325 (2015)

    Google Scholar 

  9. Wu, D.J., Feng, T., Naehrig, M., Lauter, K.: Privately evaluating decision trees and random forests. Proc. Priv. Enhanc. Technol. 2016(4), 335–355 (2016)

    Article  Google Scholar 

  10. Tai, R.K.H., Ma, J.P.K., Zhao, Y., Chow, S.S.M.: Privacy-preserving decision trees evaluation via linear functions. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10493, pp. 494–512. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66399-9_27

    Chapter  Google Scholar 

  11. Du, W., Zhan, Z.: Building decision tree classifier on private data. In IEEE International Conference on Privacy, Security and Data Mining (2002)

    Google Scholar 

  12. Ma, X., Chen, X., Zhang, X.: Non-interactive privacy-preserving neural network prediction. Inf. Sci. 481, 507–519 (2019)

    Article  Google Scholar 

  13. Ma, X., Zhang, F., Chen, X., Shen, J.: Privacy preserving multi-party computation delegation for deep learning in cloud computing. Inf. Sci. 459, 103–116 (2018)

    Article  Google Scholar 

  14. Yong, Y., Li, H., Chen, R., Zhao, Y., Yang, H., Xiaojiang, D.: Enabling secure intelligent network with cloud-assisted privacy-preserving machine learning. IEEE Netw. 33(3), 82–87 (2019)

    Article  Google Scholar 

  15. Brickell, J., Porter, D.E., Shmatikov, V., Witchel, E.: Privacy-preserving remote diagnostics. In: Proceedings of the 14th ACM Conference on Computer and Communications Security, pp. 498–507. ACM (2007)

    Google Scholar 

  16. Yao, A.C.-C.: How to generate and exchange secrets. In: 27th Annual Symposium on Foundations of Computer Science, pp. 162–167. IEEE (19860)

    Google Scholar 

  17. Barni, M., Failla, P., Kolesnikov, V., Lazzeretti, R., Sadeghi, A.-R., Schneider, T.: Secure evaluation of private linear branching programs with medical applications. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 424–439. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04444-1_26

    Chapter  Google Scholar 

  18. Damgard, I., Geisler, M., Kroigard, M.: Homomorphic encryption and secure comparison. Int. J. Appl. Crypt. 1(1), 22–31 (2008)

    Article  MathSciNet  Google Scholar 

  19. Schneider, T., Zohner, M.: GMW vs. Yao? efficient secure two-party computation with low depth circuits. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 275–292. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1_23

    Chapter  Google Scholar 

  20. De Cock, M., et al.: Efficient and private scoring of decision trees, support vector machines and logistic regression models based on pre-computation. IEEE Trans. Dependable Secure Comput. 16, 217–230 (2017)

    Article  Google Scholar 

  21. Joye, M., Salehi, F.: Private yet efficient decision tree evaluation. In: Kerschbaum, F., Paraboschi, S. (eds.) DBSec 2018. LNCS, vol. 10980, pp. 243–259. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95729-6_16

    Chapter  Google Scholar 

  22. Tueno, A., Kerschbaum, F., Katzenbeisser, S.: Private evaluation of decision trees using sublinear cost. Proc. Priv. Enhanc. Technol. 2019(1), 266–286 (2019)

    Article  Google Scholar 

  23. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16

    Chapter  Google Scholar 

  24. Hazay, C., Mikkelsen, G.L., Rabin, T., Toft, T., Nicolosi, A.A.: Efficient RSA key generation and threshold Paillier in the two-party setting. J. Cryptol. 32(2), 265–323 (2019)

    Article  MathSciNet  Google Scholar 

  25. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  Google Scholar 

  26. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_34

    Chapter  Google Scholar 

  27. Riazi, M.S., Weinert, C., Tkachenko, O., Songhori, E.M., Schneider, T., Koushanfar, F.: Chameleon: a hybrid secure computation framework for machine learning applications. In: Proceedings of the 2018 on Asia Conference on Computer and Communications Security, pp. 707–721. ACM (2018)

    Google Scholar 

  28. Liu, X., Choo, R., Deng, R., Lu, R., Weng, J.: Efficient and privacy-preserving outsourced calculation of rational numbers. IEEE Trans. Dependable Secure Comput. 15, 27–39 (2016)

    Article  Google Scholar 

  29. Elmehdwi, Y., Samanthula, B.K., Jiang, W.: Secure k-nearest neighbor query over encrypted data in outsourced environments. In: 2014 IEEE 30th International Conference on Data Engineering (ICDE), pp. 664–675. IEEE (2014)

    Google Scholar 

  30. Liu, L., et al.: Privacy-preserving mining of association rule on outsourced cloud data from multiple parties. In: Susilo, W., Yang, G. (eds.) ACISP 2018. LNCS, vol. 10946, pp. 431–451. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93638-3_25

    Chapter  Google Scholar 

  31. Wang, D., Wang, P.: Two birds with one stone: two-factor authentication with security beyond conventional bound. IEEE Trans. Dependable Secure Comput. 15(4), 708–722 (2016)

    Google Scholar 

  32. Wang, D., Cheng, H., He, D., Wang, P.: On the challenges in designing identity-based privacy-preserving authentication schemes for mobile devices. IEEE Syst. J. 12(1), 916–925 (2016)

    Article  Google Scholar 

  33. Liu, X., Deng, R.H., Choo, K.-K.R., Weng, J.: An efficient privacy-preserving outsourced calculation toolkit with multiple keys. IEEE Trans. Inf. Forensics Secur. 11(11), 2401–2414 (2016)

    Article  Google Scholar 

  34. Nikolaenko, V., Weinsberg, U., Ioannidis, S., Joye, M., Boneh, D., Taft, N.: Privacy-preserving ridge regression on hundreds of millions of records. In: 2013 IEEE Symposium on Security and Privacy (SP), pp. 334–348. IEEE (2013)

    Google Scholar 

  35. Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure constant-rounds multi-party computation for equality, comparison, bits and exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_15

    Chapter  Google Scholar 

  36. Huang, K., Liu, X., Fu, S., Guo, D., Xu, M.: A lightweight privacy-preserving CNN feature extraction framework for mobile sensing. IEEE Trans. Dependable Secure Comput. (2019)

    Google Scholar 

  37. Goldreich, O.: Foundations of Cryptography: Volume 2, Basic Applications. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  38. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast privacy-preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 192–206. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88313-5_13

    Chapter  Google Scholar 

Download references

Acknowledgement

The work is supported by the National Key Research and Development Program under grant 2017YFB0802300, the National Natural Science Foundation of China (No. 61702541, No. 61702105), the Young Elite Scientists Sponsorship Program by CAST (2017QNRC001), the Science and Technology Research Plan Program by NUDT (Grant No. ZK17-03-46), and Guangxi Cloud Computing and Large Data Collaborative Innovation Center Project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinshu Su or Rongmao Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, L., Su, J., Chen, R., Chen, J., Sun, G., Li, J. (2019). Secure and Fast Decision Tree Evaluation on Outsourced Cloud Data. In: Chen, X., Huang, X., Zhang, J. (eds) Machine Learning for Cyber Security. ML4CS 2019. Lecture Notes in Computer Science(), vol 11806. Springer, Cham. https://doi.org/10.1007/978-3-030-30619-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30619-9_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30618-2

  • Online ISBN: 978-3-030-30619-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics