Abstract
The task of classification with multi-label data is an important research field in Natural Language Processing (NLP). While there have been studies using one-stage multi-label approaches for automatic text classification, there are not many that use two-stages stacking models. In this paper we explored Binary Relevance (BR) classifiers, with J48 and probabilistic Support Vector Machine (SVM), in a two-stage stacking model. We have evaluated our proposal in three textual data sets: The Movie Database (TMDB), Enron email, and EURLEX European legal text. The results showed that by using a two-stage stacking model, we can obtain better results than by using one-stage classifiers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aggarwal, C.: Data Classification: Algorithms and Applications. Data Mining and Knowledge Discovery Series. Chapman & Hall/CRC/Taylor & Francis (2014)
Džeroski, S., Ženko, B.: Is combining classifiers with stacking better than selecting the best one? Mach. Learn. 54(3), 255–273 (2004)
Espinal-Enríquez, J., Mejía-Pedroza, R., Hernández-Lemus, E.: Computational approaches in precision medicine, chapter 13. In: Verma, M., Barh, D. (eds.) Progress and Challenges in Precision Medicine, pp. 233–250. Academic Press (2017)
Godbole, S., Sarawagi, S.: Discriminative methods for multi-labeled classification. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 22–30. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24775-3_5
Herrera, F., Charte, F., Rivera, A.J., del Jesus, M.J.: Multilabel Classification. Springer, Switzerland (2016). https://doi.org/10.1007/978-3-319-41111-8
Loza Mencía, E., Fürnkranz, J.: Efficient multilabel classification algorithms for large-scale problems in the legal domain. In: Francesconi, E., Montemagni, S., Peters, W., Tiscornia, D. (eds.) Semantic Processing of Legal Texts. LNCS (LNAI), vol. 6036, pp. 192–215. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12837-0_11
Loza Mencía, E., Janssen, F.: Learning rules for multi-label classification: a stacking and a separate-and-conquer approach. Mach. Learn. 105(1), 77–126 (2016)
Madjarov, G., Kocev, D., Gjorgjevikj, D., Džeroski, S.: An extensive experimental comparison of methods for multi-label learning. Pattern Recogn. 45(9), 3084–3104 (2012)
Marques, G., Domingues, M.A., Langlois, T., Gouyon, F.: Three current issues in music autotagging. In: 2011 International Society for Music Information Retrieval Conference, vol. 12, Florida (2011)
Montañes, E., Senge, R., Barranquero, J., Quevedo, J.R., del Coz, J.J., Hüllermeier, E.: Dependent binary relevance models for multi-label classification. Pattern Recogn. 47(3), 1494–1508 (2014)
Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009. LNCS (LNAI), vol. 5782, pp. 254–269. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04174-7_17
Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining, xxi. Pearson Addison Wesley, Boston (2005)
Tsoumakas, G., Katakis, I., Vlahavas, I.: Random k-labelsets for multilabel classification. IEEE Trans. Knowl. Data Eng. 23(7), 1079–1089 (2011)
Yang, Y.Y., Lin, Y.A., Chu, H.M., Lin, H.T.: Deep learning with a rethinking structure for multi-label classification. arXiv preprint arXiv:1802.01697 (2018)
Zhang, M.L., Zhou, Z.H.: Multilabel neural networks with applications to functional genomics and text categorization. IEEE Trans. Knowl. Data Eng. 18(10), 1338–1351 (2006)
Acknowledgments
This study was financed in part by the Conselho Nacional de Desenvolvimento Científico e Tecnológico - Brasil (CNPq).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Nunes, R.M., Domingues, M.A., Feltrim, V.D. (2019). Exploring Multi-label Stacking in Natural Language Processing. In: Moura Oliveira, P., Novais, P., Reis, L. (eds) Progress in Artificial Intelligence. EPIA 2019. Lecture Notes in Computer Science(), vol 11805. Springer, Cham. https://doi.org/10.1007/978-3-030-30244-3_58
Download citation
DOI: https://doi.org/10.1007/978-3-030-30244-3_58
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-30243-6
Online ISBN: 978-3-030-30244-3
eBook Packages: Computer ScienceComputer Science (R0)