[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Exploring Multi-label Stacking in Natural Language Processing

  • Conference paper
  • First Online:
Progress in Artificial Intelligence (EPIA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11805))

Included in the following conference series:

  • 1788 Accesses

Abstract

The task of classification with multi-label data is an important research field in Natural Language Processing (NLP). While there have been studies using one-stage multi-label approaches for automatic text classification, there are not many that use two-stages stacking models. In this paper we explored Binary Relevance (BR) classifiers, with J48 and probabilistic Support Vector Machine (SVM), in a two-stage stacking model. We have evaluated our proposal in three textual data sets: The Movie Database (TMDB), Enron email, and EURLEX European legal text. The results showed that by using a two-stage stacking model, we can obtain better results than by using one-stage classifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.themoviedb.org/documentation/api.

  2. 2.

    http://mulan.sourceforge.net/datasets-mlc.html.

  3. 3.

    ibid.

  4. 4.

    http://mulan.sourceforge.net.

References

  1. Aggarwal, C.: Data Classification: Algorithms and Applications. Data Mining and Knowledge Discovery Series. Chapman & Hall/CRC/Taylor & Francis (2014)

    Google Scholar 

  2. Džeroski, S., Ženko, B.: Is combining classifiers with stacking better than selecting the best one? Mach. Learn. 54(3), 255–273 (2004)

    Article  Google Scholar 

  3. Espinal-Enríquez, J., Mejía-Pedroza, R., Hernández-Lemus, E.: Computational approaches in precision medicine, chapter 13. In: Verma, M., Barh, D. (eds.) Progress and Challenges in Precision Medicine, pp. 233–250. Academic Press (2017)

    Google Scholar 

  4. Godbole, S., Sarawagi, S.: Discriminative methods for multi-labeled classification. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 22–30. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24775-3_5

    Chapter  Google Scholar 

  5. Herrera, F., Charte, F., Rivera, A.J., del Jesus, M.J.: Multilabel Classification. Springer, Switzerland (2016). https://doi.org/10.1007/978-3-319-41111-8

    Book  Google Scholar 

  6. Loza Mencía, E., Fürnkranz, J.: Efficient multilabel classification algorithms for large-scale problems in the legal domain. In: Francesconi, E., Montemagni, S., Peters, W., Tiscornia, D. (eds.) Semantic Processing of Legal Texts. LNCS (LNAI), vol. 6036, pp. 192–215. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12837-0_11

    Chapter  Google Scholar 

  7. Loza Mencía, E., Janssen, F.: Learning rules for multi-label classification: a stacking and a separate-and-conquer approach. Mach. Learn. 105(1), 77–126 (2016)

    Article  MathSciNet  Google Scholar 

  8. Madjarov, G., Kocev, D., Gjorgjevikj, D., Džeroski, S.: An extensive experimental comparison of methods for multi-label learning. Pattern Recogn. 45(9), 3084–3104 (2012)

    Article  Google Scholar 

  9. Marques, G., Domingues, M.A., Langlois, T., Gouyon, F.: Three current issues in music autotagging. In: 2011 International Society for Music Information Retrieval Conference, vol. 12, Florida (2011)

    Google Scholar 

  10. Montañes, E., Senge, R., Barranquero, J., Quevedo, J.R., del Coz, J.J., Hüllermeier, E.: Dependent binary relevance models for multi-label classification. Pattern Recogn. 47(3), 1494–1508 (2014)

    Article  Google Scholar 

  11. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009. LNCS (LNAI), vol. 5782, pp. 254–269. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04174-7_17

    Chapter  Google Scholar 

  12. Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining, xxi. Pearson Addison Wesley, Boston (2005)

    Google Scholar 

  13. Tsoumakas, G., Katakis, I., Vlahavas, I.: Random k-labelsets for multilabel classification. IEEE Trans. Knowl. Data Eng. 23(7), 1079–1089 (2011)

    Article  Google Scholar 

  14. Yang, Y.Y., Lin, Y.A., Chu, H.M., Lin, H.T.: Deep learning with a rethinking structure for multi-label classification. arXiv preprint arXiv:1802.01697 (2018)

  15. Zhang, M.L., Zhou, Z.H.: Multilabel neural networks with applications to functional genomics and text categorization. IEEE Trans. Knowl. Data Eng. 18(10), 1338–1351 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

This study was financed in part by the Conselho Nacional de Desenvolvimento Científico e Tecnológico - Brasil (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Mansueli Nunes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nunes, R.M., Domingues, M.A., Feltrim, V.D. (2019). Exploring Multi-label Stacking in Natural Language Processing. In: Moura Oliveira, P., Novais, P., Reis, L. (eds) Progress in Artificial Intelligence. EPIA 2019. Lecture Notes in Computer Science(), vol 11805. Springer, Cham. https://doi.org/10.1007/978-3-030-30244-3_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30244-3_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30243-6

  • Online ISBN: 978-3-030-30244-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics