[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

When the Attacker Knows a Lot: The GAGA Graph Anonymizer

  • Conference paper
  • First Online:
Information Security (ISC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11723))

Included in the following conference series:

Abstract

When releasing graph data (e.g., social network) to public or third parties, data privacy becomes a major concern. It has been shown that state-of-the-art graph anonymization techniques suffer from a lack of strong defense against De-Anonymization (DA) attacks mostly because of the bias towards utility preservation. In this paper, we propose GAGA, an Efficient Genetic Algorithm for Graph Anonymization, that simultaneously delivers high anonymization and utility preservation. To address the vulnerability against DA attacks especially when the adversary can re-identify the victim not only based on some information about the neighbors of a victim but also some knowledge on the structure of the neighbors of the victim’s neighbors, GAGA puts the concept of k(d)-neighborhood-anonymity into action by developing the first general algorithm for any d distance neighborhood. GAGA also addresses the challenge of applying minimum number of changes to the original graph to preserve data utilities via an effective and efficient genetic algorithm. Results of our evaluation show that GAGA anonymizes the graphs in a way that it is more resistant to modern DA attacks than existing techniques – GAGA (with d = 3) improves the defense against DA techniques by reducing the DA rate by at least a factor of 2.7\(\times \) in comparison to the baseline. At the same time it preserves the data utilities to a very high degree – it is the best technique for preserving 11 out of 16 utilities. Finally, GAGA provides application-oriented level of control to users via different tunable parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aggarwal, C.C., Yu, P.S.: Privacy-Preserving Data Mining: Models and Algorithms, 1st edn. Springer, Boston (2008). https://doi.org/10.1007/978-0-387-70992-5

    Book  Google Scholar 

  2. Atzori, M.: Weak k-anonymity: a low-distortion model for protecting privacy. In: Katsikas, S.K., López, J., Backes, M., Gritzalis, S., Preneel, B. (eds.) ISC 2006. LNCS, vol. 4176, pp. 60–71. Springer, Heidelberg (2006). https://doi.org/10.1007/11836810_5

    Chapter  Google Scholar 

  3. Bayardo, R.J., Agrawal, R.: Data privacy through optimal k-anonymization. In: 21st International Conference on Data Engineering (ICDE 2005), pp. 217–228, April 2005. https://doi.org/10.1109/ICDE.2005.42

  4. Casas-Roma, J., Herrera-Joancomartí, J., Torra, V.: Comparing random-based and k-anonymity-based algorithms for graph anonymization. In: Torra, V., Narukawa, Y., López, B., Villaret, M. (eds.) MDAI 2012. LNCS (LNAI), vol. 7647, pp. 197–209. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34620-0_19

    Chapter  Google Scholar 

  5. Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-MAT: a recursive model for graph mining, pp. 442–446. https://doi.org/10.1137/1.9781611972740.43

  6. Chester, S., Kapron, B., Ramesh, G., Srivastava, G., Thomo, A., Venkatesh, S.: Why Waldo befriended the dummy? K-anonymization of social networks with pseudo-nodes. Soc. Netw. Anal. Min. 3(3), 381–399 (2013). https://doi.org/10.1007/s13278-012-0084-6

    Article  Google Scholar 

  7. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: A (sub)graph isomorphism algorithm for matching large graphs. IEEE Trans. Pattern Anal. Mach. Intell. 26(10), 1367–1372 (2004). https://doi.org/10.1109/TPAMI.2004.75

    Article  Google Scholar 

  8. Hay, M., Miklau, G., Jensen, D., Weis, P., Srivastava, S.: Anonymizing social networks. Technical report, Science (2007)

    Google Scholar 

  9. Henderson, K., et al.: Rolx: structural role extraction & mining in large graphs. In: SIGKDD, pp. 1231–1239. ACM, New York (2012). https://doi.org/10.1145/2339530.2339723

  10. Ji, S., Li, W., Gong, N.Z., Mittal, P., Beyah, R.A.: On your social network de-anonymizablity: quantification and large scale evaluation with seed knowledge. In: NDSS (2015)

    Google Scholar 

  11. Ji, S., Li, W., Mittal, P., Hu, X., Beyah, R.: SecGraph: a uniform and open-source evaluation system for graph data anonymization and de-anonymization. In: Proceedings of the 24th USENIX Conference on Security Symposium, SEC 2015, pp. 303–318. USENIX Association, Berkeley (2015)

    Google Scholar 

  12. Ji, S., Li, W., Srivatsa, M., He, J.S., Beyah, R.: Structure based data de-anonymization of social networks and mobility traces. In: Chow, S.S.M., Camenisch, J., Hui, L.C.K., Yiu, S.M. (eds.) ISC 2014. LNCS, vol. 8783, pp. 237–254. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13257-0_14

    Chapter  Google Scholar 

  13. Jia, J., Wang, B., Gong, N.Z.: Random walk based fake account detection in online social networks. In: 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp. 273–284, June 2017. https://doi.org/10.1109/DSN.2017.55

  14. Korula, N., Lattanzi, S.: An efficient reconciliation algorithm for social networks. Proc. VLDB Endow. 7(5), 377–388 (2014). https://doi.org/10.14778/2732269.2732274

    Article  Google Scholar 

  15. Leskovec, J., Krevl, A.: SNAP datasets: stanford large network dataset collection, June 2014. http://snap.stanford.edu/data

  16. Li, N., Zhang, N., Das, S.K.: Relationship privacy preservation in publishing online social networks. In: 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third International Conference on Social Computing, pp. 443–450, October 2011. https://doi.org/10.1109/PASSAT/SocialCom.2011.191

  17. Liu, K., Terzi, E.: Towards identity anonymization on graphs. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, SIGMOD 2008, pp. 93–106. ACM, New York (2008). https://doi.org/10.1145/1376616.1376629

  18. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: L-diversity: privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1(1) (2007). https://doi.org/10.1145/1217299.1217302

    Article  Google Scholar 

  19. Marti, S., Ganesan, P., Garcia-Molina, H.: SPROUT: P2P routing with social networks. In: Lindner, W., Mesiti, M., Türker, C., Tzitzikas, Y., Vakali, A.I. (eds.) EDBT 2004. LNCS, vol. 3268, pp. 425–435. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30192-9_42

    Chapter  Google Scholar 

  20. Meyerson, A., Williams, R.: On the complexity of optimal k-anonymity. In: Proceedings of the Twenty-Third ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2004, pp. 223–228. ACM, New York (2004). https://doi.org/10.1145/1055558.1055591

  21. Mittal, P., Papamanthou, C., Song, D.: Preserving link privacy in social network based systems. In: NDSS (2013)

    Google Scholar 

  22. Narayanan, A., Shmatikov, V.: De-anonymizing social networks. In: 2009 30th IEEE Symposium on Security and Privacy, pp. 173–187, May 2009. https://doi.org/10.1109/SP.2009.22

  23. Sala, A., Zhao, X., Wilson, C., Zheng, H., Zhao, B.Y.: Sharing graphs using differentially private graph models. In: Proceedings of the 2011 ACM SIGCOMM Conference on Internet Measurement Conference, IMC 2011, pp. 81–98. ACM, New York (2011). https://doi.org/10.1145/2068816.2068825

  24. Srivatsa, M., Hicks, M.: Deanonymizing mobility traces: using social network as a side-channel. In: Proceedings of the 2012 ACM Conference on Computer and Communications Security, CCS 2012, pp. 628–637. ACM, New York (2012). https://doi.org/10.1145/2382196.2382262

  25. Thompson, B., Yao, D.: The union-split algorithm and cluster-based anonymization of social networks. In: Proceedings of the 4th International Symposium on Information, Computer, and Communications Security, ASIACCS 2009, pp. 218–227. ACM, New York (2009). https://doi.org/10.1145/1533057.1533088

  26. Yang, J., Leskovec, J.: Overlapping community detection at scale: a nonnegative matrix factorization approach. In: Proceedings of the Sixth ACM International Conference on Web Search and Data Mining, WSDM 2013, pp. 587–596. ACM, New York (2013). https://doi.org/10.1145/2433396.2433471

  27. Yartseva, L., Grossglauser, M.: On the performance of percolation graph matching. In: Proceedings of the First ACM Conference on Online Social Networks, COSN 2013, pp. 119–130. ACM, New York (2013). https://doi.org/10.1145/2512938.2512952

  28. Ying, X., Wu, X.: Randomizing social networks: a spectrum preserving approach, pp. 739–750. https://doi.org/10.1137/1.9781611972788.67

  29. Zhou, B., Pei, J.: Preserving privacy in social networks against neighborhood attacks. In: Proceedings of the 2008 IEEE 24th International Conference on Data Engineering, ICDE 2008, pp. 506–515. IEEE Computer Society, Washington, DC (2008). https://doi.org/10.1109/ICDE.2008.4497459

Download references

Acknowledgement

This work is supported by NSF grant CCF-1617424 to the University of California Riverside.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Alavi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alavi, A., Gupta, R., Qian, Z. (2019). When the Attacker Knows a Lot: The GAGA Graph Anonymizer. In: Lin, Z., Papamanthou, C., Polychronakis, M. (eds) Information Security. ISC 2019. Lecture Notes in Computer Science(), vol 11723. Springer, Cham. https://doi.org/10.1007/978-3-030-30215-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30215-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30214-6

  • Online ISBN: 978-3-030-30215-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics