Abstract
We propose a new framework for decision making under uncertainty to overcome the main drawbacks of current technology: modeling complexity, scenario generation, and scaling limitations. We consider three NP-hard optimization problems: the Stochastic Knapsack Problem (SKP), the Stochastic Shortest Path Problem (SSPP), and the Resource Constrained Project Scheduling Problem (RCPSP) with uncertain job durations, all with recourse. We illustrate how an integration of constraint optimization and machine learning technology can overcome the main practical shortcomings of the current state of the art.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
This is in contrast to some theoretical results on the SKP that assume we can decide in what order we wish to consider the items [6]. We consider having this freedom less realistic.
References
April, J., Glover, F., Kelly, J.P., Laguna, M.: Practical introduction to simulation optimization. In: Proceedings of the 35th Conference on Winter Simulation: Driving Innovation, pp. 71–78. Winter Simulation Conference (2003)
Berthold, T., Heinz, S., Lübbecke, M.E., Möhring, R.H., Schulz, J.: A constraint integer programming approach for resource-constrained project scheduling. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 313–317. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13520-0_34
Birge, J.R.: Decomposition and partitioning methods for multistage stochastic linear programs. Oper. Res. 33(5), 989–1007 (1985)
Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer Science & Business Media, New York (2011). https://doi.org/10.1007/978-1-4614-0237-4
Cao, Z., Guo, H., Zhang, J., Niyato, D., Fastenrath, U.: Finding the shortest path in stochastic vehicle routing: a cardinality minimization approach. IEEE Trans. Intell. Transp. Syst. 17(6), 1688–1702 (2015)
Dean, B.C., Goemans, M.X., Vondrák, J.: Approximating the stochastic knapsack problem: the benefit of adaptivity. Math. Oper. Res. 33(4), 945–964 (2008)
Dupačová, J., Consigli, G., Wallace, S.W.: Scenarios for multistage stochastic programs. Ann. Oper. Res. 100(1–4), 25–53 (2000)
Erdös, P., Rényi, A.: On random graphs. I. Publicationes Mathematicae (Debrecen) 6, 290–297 (1959)
Fu, M.C., Glover, F.W., April, J.: Simulation optimization: a review, new developments, and applications. In: Proceedings of the Winter Simulation Conference, p. 13. IEEE (2005)
Glover, F., Kelly, J., Laguna, M.: New advances for wedding optimization and simulation. In: Winter Simulation Conference 1999 Proceedings, vol. 1, pp. 255–260. IEEE (1999)
Google: Google OR-Tools (2019). developers.google.com/optimization/
Hochreiter, R., Pflug, G.C.: Financial scenario generation for stochastic multi-stage decision processes as facility location problems. Ann. OR 152(1), 257–272 (2007)
Kaut, M., Wallace, S.W.: Evaluation of scenario-generation methods for stochastic programming. Pac. J. Optim. 3(2), 257–271 (2007)
Kleywegt, A.J., Shapiro, A., Homem-de Mello, T.: The sample average approximation method for stochastic discrete optimization. SIAM J. Opt. 12(2), 479–502 (2002)
Kolisch, R., Sprecher, A.: PSPLIB-a project scheduling problem library. Eur. J. Oper. Res. 96(1), 205–216 (1997)
Long, Y., Lee, L.H., Chew, E.P.: The sample average approximation method for empty container repositioning with uncertainties. Eur. J. Oper. Res. 222(1), 65–75 (2012)
Luo, X., Dashora, Y., Shaw, T.: Airline crew augmentation: decades of improvements from sabre. INFORMS J. Appl. Anal. 45(5), 409–424 (2015)
Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algorithm portfolios based on cost-sensitive hierarchical clustering. In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI), Beijing, China, 2013, pp. 608–614 (2013)
Pelikan, M., Goldberg, D.E., Cantú-Paz, E.: BOA: the Bayesian optimization algorithm. In: Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation-Volume 1, pp. 525–532. Morgan Kaufmann Publishers Inc. (1999)
Schütz, P., Tomasgard, A., Ahmed, S.: Supply chain design under uncertainty using sample average approximation and dual decomposition. Eur. J. Oper. Res. 199(2), 409–419 (2009)
Van Slyke, R.M., Wets, R.: L-shaped linear programs with applications to optimal control and stochastic programming. SIAM J. Appl. Math. 17(4), 638–663 (1969)
Verweij, B., Ahmed, S., Kleywegt, A.J., Nemhauser, G., Shapiro, A.: The sample average approximation method applied to stochastic routing problems: a computational study. Comput. Optim. Appl. 24(2–3), 289–333 (2003)
Yen, J.Y.: An algorithm for finding shortest routes from all source nodes to a given destination in general networks. Q. Appl. Math. 27(4), 526–530 (1970)
Acknowledgements
This work is partially supported by Deutsche Forschungsgemeinschaft (DFG) grant 346183302. We thank the Paderborn Center for Parallel Computation (PC\(^2\)) for the use of the OCuLUS cluster.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Kuhlemann, S., Sellmann, M., Tierney, K. (2019). Exploiting Counterfactuals for Scalable Stochastic Optimization. In: Schiex, T., de Givry, S. (eds) Principles and Practice of Constraint Programming. CP 2019. Lecture Notes in Computer Science(), vol 11802. Springer, Cham. https://doi.org/10.1007/978-3-030-30048-7_40
Download citation
DOI: https://doi.org/10.1007/978-3-030-30048-7_40
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-30047-0
Online ISBN: 978-3-030-30048-7
eBook Packages: Computer ScienceComputer Science (R0)