[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Exploiting Counterfactuals for Scalable Stochastic Optimization

  • Conference paper
  • First Online:
Principles and Practice of Constraint Programming (CP 2019)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11802))

  • 1531 Accesses

Abstract

We propose a new framework for decision making under uncertainty to overcome the main drawbacks of current technology: modeling complexity, scenario generation, and scaling limitations. We consider three NP-hard optimization problems: the Stochastic Knapsack Problem (SKP), the Stochastic Shortest Path Problem (SSPP), and the Resource Constrained Project Scheduling Problem (RCPSP) with uncertain job durations, all with recourse. We illustrate how an integration of constraint optimization and machine learning technology can overcome the main practical shortcomings of the current state of the art.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This is in contrast to some theoretical results on the SKP that assume we can decide in what order we wish to consider the items [6]. We consider having this freedom less realistic.

References

  1. April, J., Glover, F., Kelly, J.P., Laguna, M.: Practical introduction to simulation optimization. In: Proceedings of the 35th Conference on Winter Simulation: Driving Innovation, pp. 71–78. Winter Simulation Conference (2003)

    Google Scholar 

  2. Berthold, T., Heinz, S., Lübbecke, M.E., Möhring, R.H., Schulz, J.: A constraint integer programming approach for resource-constrained project scheduling. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 313–317. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13520-0_34

    Chapter  MATH  Google Scholar 

  3. Birge, J.R.: Decomposition and partitioning methods for multistage stochastic linear programs. Oper. Res. 33(5), 989–1007 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer Science & Business Media, New York (2011). https://doi.org/10.1007/978-1-4614-0237-4

    Book  MATH  Google Scholar 

  5. Cao, Z., Guo, H., Zhang, J., Niyato, D., Fastenrath, U.: Finding the shortest path in stochastic vehicle routing: a cardinality minimization approach. IEEE Trans. Intell. Transp. Syst. 17(6), 1688–1702 (2015)

    Article  Google Scholar 

  6. Dean, B.C., Goemans, M.X., Vondrák, J.: Approximating the stochastic knapsack problem: the benefit of adaptivity. Math. Oper. Res. 33(4), 945–964 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dupačová, J., Consigli, G., Wallace, S.W.: Scenarios for multistage stochastic programs. Ann. Oper. Res. 100(1–4), 25–53 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Erdös, P., Rényi, A.: On random graphs. I. Publicationes Mathematicae (Debrecen) 6, 290–297 (1959)

    Google Scholar 

  9. Fu, M.C., Glover, F.W., April, J.: Simulation optimization: a review, new developments, and applications. In: Proceedings of the Winter Simulation Conference, p. 13. IEEE (2005)

    Google Scholar 

  10. Glover, F., Kelly, J., Laguna, M.: New advances for wedding optimization and simulation. In: Winter Simulation Conference 1999 Proceedings, vol. 1, pp. 255–260. IEEE (1999)

    Google Scholar 

  11. Google: Google OR-Tools (2019). developers.google.com/optimization/

  12. Hochreiter, R., Pflug, G.C.: Financial scenario generation for stochastic multi-stage decision processes as facility location problems. Ann. OR 152(1), 257–272 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kaut, M., Wallace, S.W.: Evaluation of scenario-generation methods for stochastic programming. Pac. J. Optim. 3(2), 257–271 (2007)

    MathSciNet  MATH  Google Scholar 

  14. Kleywegt, A.J., Shapiro, A., Homem-de Mello, T.: The sample average approximation method for stochastic discrete optimization. SIAM J. Opt. 12(2), 479–502 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kolisch, R., Sprecher, A.: PSPLIB-a project scheduling problem library. Eur. J. Oper. Res. 96(1), 205–216 (1997)

    Article  MATH  Google Scholar 

  16. Long, Y., Lee, L.H., Chew, E.P.: The sample average approximation method for empty container repositioning with uncertainties. Eur. J. Oper. Res. 222(1), 65–75 (2012)

    Article  MATH  Google Scholar 

  17. Luo, X., Dashora, Y., Shaw, T.: Airline crew augmentation: decades of improvements from sabre. INFORMS J. Appl. Anal. 45(5), 409–424 (2015)

    Article  Google Scholar 

  18. Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algorithm portfolios based on cost-sensitive hierarchical clustering. In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI), Beijing, China, 2013, pp. 608–614 (2013)

    Google Scholar 

  19. Pelikan, M., Goldberg, D.E., Cantú-Paz, E.: BOA: the Bayesian optimization algorithm. In: Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation-Volume 1, pp. 525–532. Morgan Kaufmann Publishers Inc. (1999)

    Google Scholar 

  20. Schütz, P., Tomasgard, A., Ahmed, S.: Supply chain design under uncertainty using sample average approximation and dual decomposition. Eur. J. Oper. Res. 199(2), 409–419 (2009)

    Article  MATH  Google Scholar 

  21. Van Slyke, R.M., Wets, R.: L-shaped linear programs with applications to optimal control and stochastic programming. SIAM J. Appl. Math. 17(4), 638–663 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  22. Verweij, B., Ahmed, S., Kleywegt, A.J., Nemhauser, G., Shapiro, A.: The sample average approximation method applied to stochastic routing problems: a computational study. Comput. Optim. Appl. 24(2–3), 289–333 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yen, J.Y.: An algorithm for finding shortest routes from all source nodes to a given destination in general networks. Q. Appl. Math. 27(4), 526–530 (1970)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is partially supported by Deutsche Forschungsgemeinschaft (DFG) grant 346183302. We thank the Paderborn Center for Parallel Computation (PC\(^2\)) for the use of the OCuLUS cluster.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meinolf Sellmann or Kevin Tierney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kuhlemann, S., Sellmann, M., Tierney, K. (2019). Exploiting Counterfactuals for Scalable Stochastic Optimization. In: Schiex, T., de Givry, S. (eds) Principles and Practice of Constraint Programming. CP 2019. Lecture Notes in Computer Science(), vol 11802. Springer, Cham. https://doi.org/10.1007/978-3-030-30048-7_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30048-7_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30047-0

  • Online ISBN: 978-3-030-30048-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics