Abstract
The problem of CV (or resume) text mining becomes increasingly relevant nowadays as long as it could simplify the evaluation of future employees and their suitability for the post for which they apply. The paper proposes a procedure for automatic information extraction from text documents, namely from candidate’s CVs. The described algorithm is based on Natural Language Processing methods and allows to transform text information into categorical features or classes. These features may further be used as inputs for a machine learning model to predict the suitability of the candidate for the position. Besides the general method, the description of the experiments is given in which the algorithm was used for clusterization of future employees according to their previous position and job spheres they worked in. The obtained classes were used to predict the probability of the candidate’s turnover in the first six months. Their addition allowed to raise the model score.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017)
Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text classification. arXiv preprint arXiv:1607.01759 (2016)
Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)
Mikolov, T., Yih, W.t., Zweig, G.: Linguistic regularities in continuous space word representations. In: Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 746–751 (2013)
Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)
Steinhaus, H.: Sur la division des corps materiels en parties. Bull. Acad. Polon C1. III IV, 801–804 (1956)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Tikhonova, M. (2020). Text Mining for Evaluation of Candidates Based on Their CVs. In: van der Aalst, W., et al. Analysis of Images, Social Networks and Texts. AIST 2019. Communications in Computer and Information Science, vol 1086. Springer, Cham. https://doi.org/10.1007/978-3-030-39575-9_19
Download citation
DOI: https://doi.org/10.1007/978-3-030-39575-9_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-39574-2
Online ISBN: 978-3-030-39575-9
eBook Packages: Computer ScienceComputer Science (R0)