[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Approximation Results for Makespan Minimization with Budgeted Uncertainty

  • Conference paper
  • First Online:
Approximation and Online Algorithms (WAOA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11926))

Included in the following conference series:

Abstract

We study approximation algorithms for the problem of minimizing the makespan on a set of machines with uncertainty on the processing times of jobs. In the model we consider, which goes back to [3], once the schedule is defined an adversary can pick a scenario where deviation is added to some of the jobs’ processing times. Given only the maximal cardinality of these jobs, and the magnitude of potential deviation for each job, the goal is to optimize the worst-case scenario. We consider both the cases of identical and unrelated machines. Our main result is an EPTAS for the case of identical machines. We also provide a 3-approximation algorithm and an inapproximability ratio of \(2-\epsilon \) for the case of unrelated machines.

This work was partially supported by DFG Project, “Robuste Online-Algorithmen für Scheduling-und Packungsprobleme”, JA 612/19-1, and ANR project ROBUST (ANR-16-CE40-0018).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 39.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 49.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aloulou, M.A., Croce, F.D.: Complexity of single machine scheduling problems under scenario-based uncertainty. Oper. Res. Lett. 36(3), 338–342 (2008)

    Article  MathSciNet  Google Scholar 

  2. Basu Roy, A., Bougeret, M., Goldberg, N., Poss, M.: Approximating robust bin packing with budgeted uncertainty. In: Friggstad, Z., Sack, J.-R., Salavatipour, M.R. (eds.) WADS 2019. LNCS, vol. 11646, pp. 71–84. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24766-9_6

    Chapter  Google Scholar 

  3. Bertsimas, D., Sim, M.: Robust discrete optimization and network flows. Math. Program. 98(1–3), 49–71 (2003)

    Article  MathSciNet  Google Scholar 

  4. Bertsimas, D., Sim, M.: The price of robustness. Oper. Res. 52(1), 35–53 (2004)

    Article  MathSciNet  Google Scholar 

  5. Bougeret, M., Pessoa, A.A., Poss, M.: Robust scheduling with budgeted uncertainty. Discrete Appl. Math. 261, 93–107 (2019)

    Article  MathSciNet  Google Scholar 

  6. Daniels, R.L., Kouvelis, P.: Robust scheduling to hedge against processing time uncertainty in single-stage production. Manag. Sci. 41(2), 363–376 (1995)

    Article  Google Scholar 

  7. Jansen, K., Klein, K., Verschae, J.: Closing the gap for makespan scheduling via sparsification techniques. In: 43rd International Colloquium on Automata, Languages, and Programming, ICALP 2016, 11–15 July 2016, Rome, Italy, pp. 72:1–72:13 (2016)

    Google Scholar 

  8. Jansen, K., Maack, M.: An EPTAS for scheduling on unrelated machines of few different types. Algorithms and Data Structures. LNCS, vol. 10389, pp. 497–508. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62127-2_42

    Chapter  Google Scholar 

  9. Kasperski, A., Kurpisz, A., Zielinski, P.: Approximating a two-machine flow shop scheduling under discrete scenario uncertainty. Eur. J. Oper. Res. 217(1), 36–43 (2012)

    Article  MathSciNet  Google Scholar 

  10. Kasperski, A., Kurpisz, A., Zieliński, P.: Parallel machine scheduling under uncertainty. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds.) IPMU 2012. CCIS, vol. 300, pp. 74–83. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31724-8_9

    Chapter  Google Scholar 

  11. Lenstra, J.K., Shmoys, D.B., Tardos, E.: Approximation algorithms for scheduling unrelated parallel machines. Math. Program. 46(1–3), 259–271 (1990)

    Article  MathSciNet  Google Scholar 

  12. Mastrolilli, M., Mutsanas, N., Svensson, O.: Approximating single machine scheduling with scenarios. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX/RANDOM -2008. LNCS, vol. 5171, pp. 153–164. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85363-3_13

    Chapter  Google Scholar 

  13. Tadayon, B., Smith, J.C.: Algorithms and complexity analysis for robust single-machine scheduling problems. J. Scheduling 18(6), 575–592 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marin Bougeret .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bougeret, M., Jansen, K., Poss, M., Rohwedder, L. (2020). Approximation Results for Makespan Minimization with Budgeted Uncertainty. In: Bampis, E., Megow, N. (eds) Approximation and Online Algorithms. WAOA 2019. Lecture Notes in Computer Science(), vol 11926. Springer, Cham. https://doi.org/10.1007/978-3-030-39479-0_5

Download citation

Publish with us

Policies and ethics