[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Layered RGBD Scene Flow Estimation with Global Non-rigid Local Rigid Assumption

  • Conference paper
  • First Online:
Advances in Brain Inspired Cognitive Systems (BICS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11691))

Included in the following conference series:

  • 1248 Accesses

Abstract

RGBD scene flow has attracted increasing attention in the computer vision community with the popularity of depth sensor. To accurately estimate three-dimensional motion of object, a layered scene flow estimation with global non-rigid, local rigid motion assumption is presented in this paper. Firstly, depth image is inpainted based on RGB image due to original depth image contains noises. Secondly, depth image is layered according to K-means clustering algorithm, which can quickly and simply layer the depth image. Thirdly, scene flow is estimated based on the assumption we proposed. Finally, experiments are implemented on RGBD tracking dataset and deformable 3D reconstruction dataset, and the analysis of quantitative indicators, RMS (Root Mean Square error) and AAE (Average Angular Error). The results show that the proposed method can distinguish moving regions from the static background better, and more accurately estimate the motion information of the scene by comparing with the global rigid, local non-rigid assumption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vedula, S., Baker, S., Rander, P., Collins, R., Kanade, T.: Three-dimensional scene flow. In: The 17th IEEE International Conference on Computer Vision, 1999, vol. 2, pp. 722–729. IEEE (1999)

    Google Scholar 

  2. Huguet, F., Devernay, F.: A variational method for scene flow estimation from stereo sequences. In: The 11th International Conference on Computer Vision, 2007, pp. 1–7. IEEE (2007)

    Google Scholar 

  3. Vogel, C., Schindler, K., Roth, S.: Piecewise rigid scene flow. In: 2013 IEEE International Conference on Computer Vision, 2013, pp. 1377–1384. IEEE (2013)

    Google Scholar 

  4. Quiroga, J., Devernay, F., Crowley, J.: Scene flow by tracking in intensity and depth data. In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2012, pp. 50–57. IEEE (2012)

    Google Scholar 

  5. Hadfield, S., Bowden, R.: Kinecting the dots: particle based scene flow from depth sensors. In: IEEE International Conference on Computer Vision, 2012, pp. 2290–2295. IEEE (2012)

    Google Scholar 

  6. Gottfried, J.-M., Fehr, J., Garbe, C.S.: Computing range flow from multi-modal Kinect Data. In: Bebis, G., et al. (eds.) ISVC 2011. LNCS, vol. 6938, pp. 758–767. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24028-7_70

    Chapter  Google Scholar 

  7. Xiao, D., Yang, Q., Yang, B., Wei, W.: Monocular scene flow estimation via variational method. Multimedia Tools Appl. 6(8), 10575–10597 (2017)

    Article  Google Scholar 

  8. Sun, D., Sudderth, E., Pfister, H.: Layered RGBD scene flow estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 548–556. IEEE (2015)

    Google Scholar 

  9. Hadfield, S., Bowden, R.: Scene particles: unregularized particle-based scene flow estimation. IEEE Trans. Pattern Anal. Mach. Intell. 36(3), 564–576 (2014)

    Article  Google Scholar 

  10. Xiang, X., Zhai, M., Zhang, R., Xu, W., El Saddik, A.: Scene flow estimation based on 3D local rigidity assumption and depth map driven anisotropic smoothness. IEEE Access 6, 30012–30023 (2018)

    Article  Google Scholar 

  11. Wedel, A., Rabe, C., Vaudrey, T., Brox, T., Franke, U., Cremers, D.: Efficient dense scene flow from sparse or dense stereo data. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5302, pp. 739–751. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88682-2_56

    Chapter  Google Scholar 

  12. Schuster, R., Wasenmuller, O., Kuschk, G., Bailer, C., Stricker, D.: SceneFlowFields: dense interpolation of sparse scene flow correspondences. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), 2018, pp. 1056–1065. IEEE (2016)

    Google Scholar 

  13. Ren, Z., Sun, D., Kautz, J., Sudderth, E.: Cascaded scene flow prediction using semantic segmentation. In: 2017 International Conference on 3D Vision (3DV), 2017, pp. 225–233. IEEE (2017)

    Google Scholar 

  14. Sun, D., Sudderth, E., Black, M.: Layered image motion with explicit occlusions, temporal consistency, and depth ordering. In: Advances in Neural Information Processing Systems (NIPS), 2010, pp. 2226–2234 (2016)

    Google Scholar 

  15. Sun, D., Wulff, J., Sudderth, E., Pfister, H., Black, M.: A fully-connected layered model of foreground and background flow. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 2451–2458. IEEE (2013)

    Google Scholar 

  16. Zhang, Y., Dai, J., Zhang, H., Yang, L.: Depth inpainting algorithm of RGB-D camera combined with color image. In: 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), 2018, pp. 1391–1395. IEEE (2018)

    Google Scholar 

  17. Slavcheva, M., Baust, M., Cremers, D., Ilic, S.: KillingFusion: non-rigid 3D reconstruction without correspondences. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5474–5483 (2017)

    Google Scholar 

  18. Yan, Y., et al.: Cognitive fusion of thermal and visible imagery for effective detection and tracking of pedestrians in videos. Cogn. Comput. 10(1), 94–104 (2018)

    Article  Google Scholar 

  19. Ren, J.: Fusion of intensity and inter-component chromatic difference for effective and robust colour edge detection. IET Image Process. 4(4), 294–301 (2010)

    Article  MathSciNet  Google Scholar 

  20. Feng, Y., et al.: Object-based 2D-to-3D video conversion for effective stereoscopic content generation in 3D-TV applications. IEEE Trans. Broadcast. 57(2), 500–509 (2011)

    Article  Google Scholar 

  21. Ren, J., et al.: High-accuracy sub-pixel motion estimation from noisy images in Fourier domain. IEEE Trans. Image Process. 19(5), 1379–1384 (2009)

    MathSciNet  MATH  Google Scholar 

  22. Feng, W., Huang, W., Ren, J.: Class imbalance ensemble learning based on margin theory. Appl. Sci. 8(5), 815 (2018)

    Article  Google Scholar 

  23. Sun, G., Ma, P., et al.: A stability constrained adaptive alpha for gravitational search algorithm. Knowl.-Based Syst. 139, 200–213 (2018)

    Article  Google Scholar 

  24. Wang, Z., et al.: A deep-learning based feature hybrid framework for spatiotemporal saliency detection inside videos. Neurocomputing 287, 68–83 (2018)

    Article  Google Scholar 

  25. Han, J., et al.: Background prior-based salient object detection via deep reconstruction residual. IEEE Trans. Circuits Syst. Video Technol. 25(8), 1309–1321 (2014)

    Google Scholar 

Download references

Acknowledgment

This work has been supported by the National Natural Science Foundation of China under grant Nos. 6150238, 61501370 and 61703333. Thanks Deqing Sun et al. for providing the code.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiuxiu Li or Haiyan Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, X., Liu, Y., Jin, H., Cai, L., Zheng, J. (2020). Layered RGBD Scene Flow Estimation with Global Non-rigid Local Rigid Assumption. In: Ren, J., et al. Advances in Brain Inspired Cognitive Systems. BICS 2019. Lecture Notes in Computer Science(), vol 11691. Springer, Cham. https://doi.org/10.1007/978-3-030-39431-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39431-8_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39430-1

  • Online ISBN: 978-3-030-39431-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics