[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Tissue Classification to Support Local Active Delineation of Brain Tumors

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2019)

Abstract

In this paper, we demonstrate how a semi-automatic algorithm we proposed in previous work may be integrated into a protocol which becomes fully automatic for the detection of brain metastases. Such a protocol combines 11C-labeled Methionine PET acquisition with our previous segmentation approach. We show that our algorithm responds especially well to this modality thereby upgrading its status from semi-automatic to fully automatic for the presented application. In this approach, the active contour method is based on the minimization of an energy functional which integrates the information provided by a machine learning algorithm. The rationale behind such a coupling is to introduce in the segmentation the physician knowledge through a component capable of influencing the final outcome toward what would be the segmentation performed by a human operator. In particular, we compare the performance of three different classifiers: Naïve Bayes classification, K-Nearest Neighbor classification, and Discriminant Analysis. A database comprising seventeen patients with brain metastases is considered to assess the performance of the proposed method in the clinical environment.

Regardless of the classifier used, automatically delineated lesions show high agreement with the gold standard (R2 = 0.98). Experimental results show that the proposed protocol is accurate and meets the physician requirements for radiotherapy treatment purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Comelli, A., et al.: Automatic multi-seed detection for MR breast image segmentation. In: Battiato, S., Gallo, G., Schettini, R., Stanco, F. (eds.) ICIAP 2017. LNCS, vol. 10484, pp. 706–717. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68560-1_63

    Chapter  Google Scholar 

  2. Astner, S.T., Dobrei-Ciuchendea, M., Essler, M., et al.: Effect of 11C-Methionine-Positron emission tomography on gross tumor volume delineation in stereotactic radiotherapy of skull base meningiomas. Int. J. Radiat. Oncol. Biol. Phys. 72, 1161–1167 (2008). https://doi.org/10.1016/j.ijrobp.2008.02.058

    Article  Google Scholar 

  3. Grosu, A.L., Weber, W.A., Franz, M., et al.: Reirradiation of recurrent high-grade gliomas using amino acid PET (SPECT)/CT/MRI image fusion to determine gross tumor volume for stereotactic fractionated radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 63, 511–519 (2005). https://doi.org/10.1016/j.ijrobp.2005.01.056

    Article  Google Scholar 

  4. Borasi, G., Russo, G., Alongi, F., et al.: High-intensity focused ultrasound plus concomitant radiotherapy: a new weapon in oncology? J. Ther. Ultrasound 1, 6 (2013). https://doi.org/10.1186/2050-5736-1-6

    Article  Google Scholar 

  5. Banna, G.L., Anile, G., Russo, G., et al.: Predictive and prognostic value of early disease progression by PET evaluation in advanced non-small cell lung cancer. Oncol. (2017). https://doi.org/10.1159/000448005

    Article  Google Scholar 

  6. Angulakshmi, M., Lakshmi Priya, G.G.: Automated brain tumour segmentation techniques—a review. Int. J. Imaging Syst. Technol. (2017). https://doi.org/10.1002/ima.22211

    Article  Google Scholar 

  7. Zaidi, H., El Naqa, I.: PET-guided delineation of radiation therapy treatment volumes: a survey of image segmentation techniques. Eur. J. Nucl. Med. Mol. Imaging 37, 2165–2187 (2010). https://doi.org/10.1007/s00259-010-1423-3

    Article  Google Scholar 

  8. Foster, B., Bagci, U., Mansoor, A., et al.: A review on segmentation of positron emission tomography images. Comput. Biol. Med. 50, 76–96 (2014). https://doi.org/10.1016/j.compbiomed.2014.04.014

    Article  Google Scholar 

  9. Khadidos, A., Sanchez, V., Li, C.T.: Weighted level set evolution based on local edge features for medical image segmentation. IEEE Trans. Image Process. (2017). https://doi.org/10.1109/TIP.2017.2666042

    Article  MathSciNet  MATH  Google Scholar 

  10. Göçeri, E.: Fully automated liver segmentation using Sobolev gradient-based level set evolution. Int. J. Numer. Method Biomed. Eng. (2016). https://doi.org/10.1002/cnm.2765

    Article  Google Scholar 

  11. Min, H., Jia, W., Zhao, Y., et al.: LATE: a level-set method based on local approximation of taylor expansion for segmenting intensity inhomogeneous images. IEEE Trans. Image Process. (2018). https://doi.org/10.1109/TIP.2018.2848471

    Article  MathSciNet  MATH  Google Scholar 

  12. Goceri, E., Dura, E.: A level set method with Sobolev gradient and Haralick edge detection. In: 4th World Conference on Information Technology (WCIT 2013), vol. 5, pp. 131–140 (2013)

    Google Scholar 

  13. Comelli, A., Stefano, A., Russo, G., et al.: A smart and operator independent system to delineate tumours in positron emission tomography scans. Comput. Biol. Med. (2018). https://doi.org/10.1016/J.COMPBIOMED.2018.09.002

    Article  Google Scholar 

  14. Comelli, A., Stefano, A., Russo, G., et al.: K-nearest neighbor driving active contours to delineate biological tumor volumes. Eng. Appl. Artif. Intell. 81, 133–144 (2019). https://doi.org/10.1016/j.engappai.2019.02.005

    Article  Google Scholar 

  15. Comelli, A., Stefano, A., Bignardi, S., et al.: Active contour algorithm with discriminant analysis for delineating tumors in positron emission tomography. Artif. Intell. Med. 94, 67–78 (2019). https://doi.org/10.1016/J.ARTMED.2019.01.002

    Article  Google Scholar 

  16. Comelli, A., et al.: A kernel support vector machine based technique for Crohn’s disease classification in human patients. In: Barolli, L., Terzo, O. (eds.) CISIS 2017. AISC, vol. 611, pp. 262–273. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-61566-0_25

    Chapter  Google Scholar 

  17. Licari, L., et al.: Use of the KSVM-based system for the definition, validation and identification of the incisional hernia recurrence risk factors. Il Giornale di chirurgia 40(1), 32–38 (2019)

    Google Scholar 

  18. Agnello, L., Comelli, A., Ardizzone, E., Vitabile, S.: Unsupervised tissue classification of brain MR images for voxel-based morphometry analysis. Int. J. Imaging Syst. Technol. (2016). https://doi.org/10.1002/ima.22168

    Article  Google Scholar 

  19. Lankton, S., Nain, D., Yezzi, A., Tannenbaum, A.: Hybrid geodesic region-based curve evolutions for image segmentation. In: Proceedings of the SPIE 6510, Medical Imaging 2007: Physics of Medical Imaging, 16 March 2007, p. 65104U (2007). https://doi.org/10.1117/12.709700

  20. Comelli, A., Stefano, A., Benfante, V., Russo, G.: Normal and abnormal tissue classification in PET oncological studies. Pattern Recognit. Image Anal. 28, 121–128 (2018). https://doi.org/10.1134/S1054661818010054

    Article  Google Scholar 

  21. Day, E., Betler, J., Parda, D., et al.: A region growing method for tumor volume segmentation on PET images for rectal and anal cancer patients. Med. Phys. 36, 4349–4358 (2009). https://doi.org/10.1118/1.3213099

    Article  Google Scholar 

  22. Belhassen, S., Zaidi, H.: A novel fuzzy C-means algorithm for unsupervised heterogeneous tumor quantification in PET. Med. Phys. 37, 1309–1324 (2010). https://doi.org/10.1118/1.3301610

    Article  Google Scholar 

  23. Stefano, A., Vitabile, S., Russo, G., et al.: An enhanced random walk algorithm for delineation of head and neck cancers in PET studies. Med. Biol. Eng. Comput. 55, 897–908 (2017). https://doi.org/10.1007/s11517-016-1571-0

    Article  Google Scholar 

  24. Stefano, A., Vitabile, S., Russo, G., et al.: A fully automatic method for biological target volume segmentation of brain metastases. Int. J. Imaging Syst. Technol. 26, 29–37 (2016). https://doi.org/10.1002/ima.22154

    Article  Google Scholar 

  25. Stefano, A., et al.: An automatic method for metabolic evaluation of gamma knife treatments. In: Murino, V., Puppo, E. (eds.) ICIAP 2015. LNCS, vol. 9279, pp. 579–589. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23231-7_52

    Chapter  Google Scholar 

  26. Taha, A.A., Hanbury, A.: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med. Imaging 15, 29 (2015). https://doi.org/10.1186/s12880-015-0068-x

    Article  Google Scholar 

  27. Hatt, M., Laurent, B., Ouahabi, A., et al.: The first MICCAI challenge on PET tumor segmentation. Med. Image Anal. 44, 177–195 (2018). https://doi.org/10.1016/j.media.2017.12.007

    Article  Google Scholar 

  28. Warfield, S.K., Zou, K.H., Wells, W.M.: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans. Med. Imaging 23, 903–921 (2004). https://doi.org/10.1109/TMI.2004.828354

    Article  Google Scholar 

  29. Agnello, L., Comelli, A., Vitabile, S.: Feature dimensionality reduction for mammographic report classification. In: Pop, F., Kołodziej, J., Di Martino, B. (eds.) Resource Management for Big Data Platforms. CCN, pp. 311–337. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44881-7_15

    Chapter  Google Scholar 

  30. Comelli, A., Agnello, L., Vitabile, S.: An ontology-based retrieval system for mammographic reports. In: Proceedings of IEEE Symposium Computers and Communication (2016). https://doi.org/10.1109/ISCC.2015.7405644

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Comelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Comelli, A. et al. (2020). Tissue Classification to Support Local Active Delineation of Brain Tumors. In: Zheng, Y., Williams, B., Chen, K. (eds) Medical Image Understanding and Analysis. MIUA 2019. Communications in Computer and Information Science, vol 1065. Springer, Cham. https://doi.org/10.1007/978-3-030-39343-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39343-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39342-7

  • Online ISBN: 978-3-030-39343-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics