Abstract
The knowledge and understanding of abstract concepts systematically occur in the studies of mathematics. The epistemological approach of these concepts gradually becomes of higher importance as the level of abstraction and the risk of developing a “primitive concept” which is different from the knowledge of the topic itself increase. A typical case relates to the concepts of infinity and infinitesimal. The basic idea is to overturn the normal “concept-model” approach: no longer a concept which has to be studied and modeled in a further moment but rather a model that can be manipulated (from the calculation point of view) and that has to be associated to a concept that is compatible with the calculus properties of the selected model. In this paper the authors want to prove the usefulness of this new approach in the study of infinite quantities and of the infinitesimal calculus. To do this, they expose results of an experiment being a test proposed to students of a high school. The aim of the test is to demonstrate that this new solution could be useful in order to enforce ideas and acknowledgment about infinitesimal calculus. In order to do that, the authors propose a test to their students a first time without giving any theoretical information but only using an arithmetic/algebraic model. In a second moment, after some lectures, the students repeat the test showing that new better results come out. The reason is that after lessons, students could join new basic ideas or primitive concepts to their calculus abilities. By such doing they do not use a traditional “concept–model” but a new “model–concept” solution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Antoniotti, L., Caldarola, F., d’Atri, G., Pellegrini, M.: New approaches to basic calculus: an experimentation via numerical computation. In: Sergeyev, Ya.D., Kvasov, D.E. (eds.) NUMTA 2019. LNCS, vol. 11973, pp. 329–342. Springer, Heidelberg (2019)
Antoniotti, L., Caldarola, F., Maiolo, M.: Infinite numerical computing applied to Hilbert’s, Peano’s, and Moore’s curves. Mediterranean J. Math. (to appear)
Asubel, D.: Educazione e processi cognitivi. Franco Angeli (1978)
Bertacchini, F., Bilotta, E., Caldarola, F., Pantano, P.: The role of computer simulations in learning analytic mechanics towards chaos theory: a course experimentation. Int. J. Math. Educ. Sci. Technol. 50(1), 100–120 (2019)
Bonaiuti, G., Calvani, A., Ranieri, M.: Fondamenti di didattica. Teoria e prassi dei dispositivi formativi. Carrocci, Roma (2007)
Caldarola, F.: The exact measures of the Sierpiński \(d\)-dimensional tetrahedron in connection with a Diophantine nonlinear system. Commun. Nonlinear Sci. Numer. Simul. 63, 228–238 (2018). https://doi.org/10.1016/j.cnsns.2018.02.026
Caldarola, F.: The Sierpiński curve viewed by numerical computations with infinities and infinitesimals. Appl. Math. Comput. 318, 321–328 (2018). https://doi.org/10.1016/j.amc.2017.06.024
Caldarola, F., Cortese, D., d’Atri, G., Maiolo, M.: Paradoxes of the infinite and ontological dilemmas between ancient philosophy and modern mathematical solutions. In: Sergeyev, Y.D., Kvasov, D.E. (eds.) NUMTA 2019. LNCS, vol. 11973, pp. 358–372. Springer, Heidelberg (2019)
Caldarola, F., Maiolo, M., Solferino, V.: A new approach to the Z-transform through infinite computation. Commun. Nonlinear Sci. Numer. Simul. 82, 105019 (2020). https://doi.org/10.1016/j.cnsns.2019.105019
Cococcioni, M., Pappalardo, M., Sergeyev, Y.D.: Lexicographic multi-objective linear programming using grossone methodology: theory and algorithm. Appl. Math. Comput. 318, 298–311 (2018)
De Cosmis, S., De Leone, R.: The use of grossone in mathematical programming and operations research. Appl. Math. Comput. 218(16), 8029–8038 (2012)
Ely, R.: Nonstandard student conceptions about infinitesimals. J. Res. Math. Educ. 41(2), 117–146 (2010)
Faggiano, E.: “Integrare" le tecnologie nella didattica della Matematica: un compito complesso. Bricks 2(4), 98–102 (2012)
Gastaldi, M.: Didattica generale. Mondadori, Milano (2010)
Gennari, M.: Didattica generale. Bompiani, Milano (2006)
Iannone P., Rizza D., Thoma A.: Investigating secondary school students’ epistemologies through a class activity concerning infinity. In: Bergqvist E., et al. (eds.) Proceedings of the 42nd Conference of the International Group for the Psychology of Mathematics Education, Umeå, Sweden, vol. 3, pp. 131–138. PME (2018)
La Neve, C.: Manuale di didattica. Il sapere sull’insegnamento. La Scuola, Brescia (2011)
Palumbo, C., Zich, R.: Matematica ed informatica: costruire le basi di una nuova didattica 2(4), 10–19 (2012)
Rizza, D.: Primi Passi nell’Aritmetica dell’Infinito. Un nuovo modo di contare e misurare (2019, Preprint)
Rizza, D.: A study of mathematical determination through Bertrand’s Paradox. Philosophia Mathematica 26(3), 375–395 (2018)
Scimone, A., Spagnolo, F.: Il caso emblematico dell’inverso del teorema di Pitagora nella storia della trasposizione didattica attraverso i manuali. La matematica e la sua didattica 2, 217–227 (2005)
Sergeyev, Y.D.: A new applied approach for executing computations with infinite and infinitesimal quantities. Informatica 19, 567–596 (2008)
Sergeyev, Y.D.: Arithmetic of infinity. 2nd electronic ed. 2013. Edizioni Orizzonti Meridionali, Cosenza (2003)
Sergeyev, Y.D.: Numerical point of view on Calculus for functions assuming finite, infinite, and infinitesimal values over finite, infinite, and infinitesimal domains. Nonlinear Anal. Ser. A: Theory Methods Appl. 1(12), 1688–1707 (2009)
Sergeyev, Y.D.: Un semplice modo per trattare le grandezze infinite ed infinitesime. Matematica, Società Cultura: Rivista dell’Unione Matematica Italiana 8(1), 111–147 (2015)
Sergeyev, Y.D.: Numerical infinities and infinitesimals: Methodology, applications, and repercussions on two Hilbert problems. EMS Surv. Math. Sci. 4(2), 219–320 (2017)
Sergeyev, Y.D., Mukhametzhanov, M.S., Mazzia, F., Iavernaro, F., Amodio, P.: Numerical methods for solving initial value problems on the infinity computer. Int. J. Unconv. Comput. 12, 3–23 (2016)
Tall, D.: A child thinking about infinity. J. Math. Behav. 20, 7–19 (2001)
Acknowledgements
The authors thank Fabio Caldarola, University of Calabria, for the supervision of the project and the Headmistress of Liceo Scientifico “Filolao”, Antonella Romeo, for the economic support. The authors thank the anonymous reviewers for their useful comments that have improved the presentation. Special thanks go to Irene Dattolo for her valuable support provided for the translation of the text.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Ingarozza, F., Adamo, M.T., Martino, M., Piscitelli, A. (2020). A Grossone-Based Numerical Model for Computations with Infinity: A Case Study in an Italian High School. In: Sergeyev, Y., Kvasov, D. (eds) Numerical Computations: Theory and Algorithms. NUMTA 2019. Lecture Notes in Computer Science(), vol 11973. Springer, Cham. https://doi.org/10.1007/978-3-030-39081-5_39
Download citation
DOI: https://doi.org/10.1007/978-3-030-39081-5_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-39080-8
Online ISBN: 978-3-030-39081-5
eBook Packages: Computer ScienceComputer Science (R0)