[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

OctopusNet: A Deep Learning Segmentation Network for Multi-modal Medical Images

  • Conference paper
  • First Online:
Multiscale Multimodal Medical Imaging (MMMI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11977))

Included in the following conference series:

Abstract

Deep learning models, such as the fully convolutional network (FCN), have been widely used in 3D biomedical segmentation and achieved state-of-the-art performance. Multiple modalities are often used for disease diagnosis and quantification. Two approaches are widely used in the literature to fuse multiple modalities in the segmentation networks: early-fusion (which stacks multiple modalities as different input channels) and late-fusion (which fuses the segmentation results from different modalities at the very end). These fusion methods easily suffer from the cross-modal interference caused by the input modalities which have wide variations. To address the problem, we propose a novel deep learning architecture, namely OctopusNet, to better leverage and fuse the information contained in multi-modalities. The proposed framework employs a separate encoder for each modality for feature extraction and exploits a hyper-fusion decoder to fuse the extracted features while avoiding feature explosion. We evaluate the proposed OctopusNet on two publicly available datasets, i.e. ISLES-2018 and MRBrainS-2013. The experimental results show that our framework outperforms the commonly-used feature fusion approaches and yields the state-of-the-art segmentation accuracy.

This work was done when Yu Chen was an intern at YouTu Lab.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.isles-challenge.org/.

  2. 2.

    http://mrbrains13.isi.uu.nl/index.php.

  3. 3.

    This network has an octopus shape with a body (the decoder) and eight arms (the encoders). This is where the name, OctopusNet, comes from.

  4. 4.

    https://www.smir.ch/ISLES/Start2018.

References

  1. Pereira, S., Alves, V., Silva, C.A.: Adaptive feature recombination and recalibration for semantic segmentation: application to brain tumor segmentation in MRI. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 706–714. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_81

    Chapter  Google Scholar 

  2. Shen, H., Wang, R., Zhang, J., McKenna, S.J.: Boundary-aware fully convolutional network for brain tumor segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 433–441. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_49

    Chapter  Google Scholar 

  3. Nie, D., Wang, L., Gao, Y., Shen, D.: Fully convolutional networks for multi-modality isointense infant brain image segmentation. In: ISBI, pp. 1342–1345 (2016)

    Google Scholar 

  4. Wang, L., et al.: Volume-based analysis of 6-month-old infant brain MRI for autism biomarker identification and early diagnosis. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 411–419. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_47

    Chapter  Google Scholar 

  5. Wu, Z., et al.: Registration-free infant cortical surface parcellation using deep convolutional neural networks. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 672–680. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_77

    Chapter  Google Scholar 

  6. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv e-print arXiv:1409.1556 (2014)

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  8. Huang, G., Liu, Z., Maaten, L.V.D., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR, pp. 2261–2269 (2017)

    Google Scholar 

  9. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  10. Maier, O., Menze, B.H., Gablentz, J.V.D., et al.: ISLES 2015 - a public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI. Med. Image Anal. 35, 250–269 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuexiang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Y., Chen, J., Wei, D., Li, Y., Zheng, Y. (2020). OctopusNet: A Deep Learning Segmentation Network for Multi-modal Medical Images. In: Li, Q., Leahy, R., Dong, B., Li, X. (eds) Multiscale Multimodal Medical Imaging. MMMI 2019. Lecture Notes in Computer Science(), vol 11977. Springer, Cham. https://doi.org/10.1007/978-3-030-37969-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37969-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37968-1

  • Online ISBN: 978-3-030-37969-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics