Abstract
Human facial expression plays the key role in the understanding of the social behavior. Many deep learning approaches present facial emotion recognition and automatic image captioning considering human sentiments. However, most current deep learning models for facial expression analysis do not contain comprehensive, detailed information of a single face. In this paper, we newly introduce a text-based facial expression description using several essential components describing comprehensive facial expression: gender, facial action units, and corresponding intensities. Then, we propose comprehensive facial expression sentence generating model along with facial expression recognition model for a single facial image to verify the effectiveness of our text-based dataset. Experimental results show that the proposed two models are supporting each other improving their performances: the text-based facial expression description provides comprehensive semantic information to the facial emotion recognition model. Also, the visual information from the emotion recognition model guides the facial expression sentence generation to produce a proper sentence describing comprehensive description. The text-based dataset is available at https://github.com/joannahong/Text-based-dataset-with-comprehensive-facial-expression-sentence.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Anderson, P., Fernando, B., Johnson, M., Gould, S.: SPICE: semantic propositional image caption evaluation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 382–398. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_24
Banerjee, S., Lavie, A.: METEOR: an automatic metric for MT evaluation with improved correlation with human judgments. In: Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization, pp. 65–72 (2005)
Ekman, P.: Basic emotions. Handb. Cogn. Emot. 98(45–60), 16 (1999)
Ekman, R.: What the Face Reveals: Basic and Applied Studies of Spontaneous Expression Using the Facial Action Coding System (FACS). Oxford University Press, USA (1997)
Fasel, B., Luettin, J.: Automatic facial expression analysis: a survey. Pattern Recogn. 36(1), 259–275 (2003)
Huber, B., McDuff, D., Brockett, C., Galley, M., Dolan, B.: Emotional dialogue generation using image-grounded language models. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, p. 277. ACM (2018)
Kahou, S.E., et al.: EmoNets: multimodal deep learning approaches for emotion recognition in video. J. Multimodal User Interfaces 10(2), 99–111 (2016)
Ko, B.: A brief review of facial emotion recognition based on visual information. Sensors 18(2), 401 (2018)
Lucey, P., Cohn, J.F., Kanade, T., Saragih, J., Ambadar, Z., Matthews, I.: The extended Cohn-Kanade dataset (ck+): a complete dataset for action unit and emotion-specified expression. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops, pp. 94–101. IEEE (2010)
Mavadati, M., Sanger, P., Mahoor, M.H.: Extended DISFA dataset: investigating posed and spontaneous facial expressions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1–8 (2016)
Mohamad Nezami, O., Dras, M., Anderson, P., Hamey, L.: Face-cap: image captioning using facial expression analysis. In: Berlingerio, M., Bonchi, F., Gärtner, T., Hurley, N., Ifrim, G. (eds.) ECML PKDD 2018. LNCS (LNAI), vol. 11051, pp. 226–240. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10925-7_14
Pantic, M., Valstar, M., Rademaker, R., Maat, L.: Web-based database for facial expression analysis. In: 2005 IEEE International Conference on Multimedia and Expo, pp. 5-pp. IEEE (2005)
Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, pp. 311–318. Association for Computational Linguistics (2002)
Tang, Y.: Deep learning using linear support vector machines. arXiv preprint. arXiv:1306.0239 (2013)
Vedantam, R., Lawrence Zitnick, C., Parikh, D.: CIDEr: consensus-based image description evaluation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4566–4575 (2015)
Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: a neural image caption generator. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3156–3164 (2015)
Wegrzyn, M., Vogt, M., Kireclioglu, B., Schneider, J., Kissler, J.: Mapping the emotional face. How individual face parts contribute to successful emotion recognition. PloS One 12(5), e0177239 (2017)
Xu, K., et al.: Show, attend and tell: neural image caption generation with visual attention. In: International Conference on Machine Learning, pp. 2048–2057 (2015)
Yu, Z., Zhang, C.: Image based static facial expression recognition with multiple deep network learning. In: Proceedings of the 2015 ACM on International Conference on Multimodal Interaction, pp. 435–442. ACM (2015)
Zeng, N., Zhang, H., Song, B., Liu, W., Li, Y., Dobaie, A.M.: Facial expression recognition via learning deep sparse autoencoders. Neurocomputing 273, 643–649 (2018)
Acknowledgement
The authors would like to express their gratitude to Wissam J. Baddar for his discussion and efforts in building the text-based facial expression dataset.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Hong, J., Lee, H.J., Kim, Y., Ro, Y.M. (2020). Face Tells Detailed Expression: Generating Comprehensive Facial Expression Sentence Through Facial Action Units. In: Ro, Y., et al. MultiMedia Modeling. MMM 2020. Lecture Notes in Computer Science(), vol 11962. Springer, Cham. https://doi.org/10.1007/978-3-030-37734-2_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-37734-2_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-37733-5
Online ISBN: 978-3-030-37734-2
eBook Packages: Computer ScienceComputer Science (R0)