[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

An Extensible Framework for Interactive Real-Time Visualizations of Large-Scale Heterogeneous Multimedia Information from Online Sources

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11962))

Included in the following conference series:

Abstract

This work presents the user-centered design and development of a generic and extensible visualization framework that can be re-used in various scenarios in order to communicate large–scale heterogeneous multimedia information obtained from social media and Web sources, through user-friendly interactive visualizations in real-time. Using the particular framework as a basis, two Web-based dashboards demonstrating the visual analytics components of our framework have been developed. Additionally, three indicative use case scenarios where these dashboards can be employed are described. Finally, preliminary user feedback and improvements are discussed, and directions for further development are proposed on the basis of the findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The questions of our survey are not included due to space limitations.

References

  1. Keim, D., Andrienko, G., Fekete, J.-D., Görg, C., Kohlhammer, J., Melançon, G.: Visual analytics: definition, process, and challenges. In: Kerren, A., Stasko, J.T., Fekete, J.-D., North, C. (eds.) Information Visualization. LNCS, vol. 4950, pp. 154–175. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70956-5_7

    Chapter  Google Scholar 

  2. Averbuch, M., et al.: As you like it: tailorable information visualization. Database Visualization Research Group. Tufts University (2004)

    Google Scholar 

  3. Wong, P.C., Thomas, J.: Visual analytics. IEEE Comput. Graph. Appl. 5, 20–21 (2004)

    Article  Google Scholar 

  4. Kang, Y.A., Gorg, C., Stasko, J.: Evaluating visual analytics systems for investigative analysis: deriving design principles from a case study. In: IEEE Symposium on Visual Analytics Science and Technology, pp. 139–146. IEEE (2009)

    Google Scholar 

  5. Keim, D.A., Mansmann, F., Schneidewind, J., Thomas, J., Ziegler, H.: Visual analytics: scope and challenges. In: Simoff, S.J., Böhlen, M.H., Mazeika, A. (eds.) Visual Data Mining. LNCS, vol. 4404, pp. 76–90. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71080-6_6

    Chapter  Google Scholar 

  6. Moere, A.V.: Beyond the tyranny of the pixel: exploring the physicality of information visualization. In: 12th International Conference on Information Visualization. IEEE (2008)

    Google Scholar 

  7. Ware, C.: Information Visualization: Perception for Design. Elsevier, Amsterdam (2012)

    Google Scholar 

  8. Behrens, C.: The Form of Facts and Figures: Design Patterns for Interactive Information Visualization (2008)

    Google Scholar 

  9. Jun, E., Steven, L., Salvendy, G.: A visual information processing model to characterize interactive visualization environments. Int. J. Hum.-Comput. Interact. 27(4), 348–363 (2011)

    Article  Google Scholar 

  10. Globus, Al.: Principles of information display for visualization practitioners. Rev. Econ. Bus. Stud. REBS 2, 161 (1994)

    Google Scholar 

  11. Diakopoulos, N., Naaman, M., Kivran-Swaine, F.: Diamonds in the rough: social media visual analytics for journalistic inquiry. In: IEEE Symposium on Visual Analytics Science and Technology. IEEE (2010)

    Google Scholar 

  12. Marcus, A., et al.: Twitinfo: aggregating and visualizing microblogs for event exploration. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM (2011)

    Google Scholar 

  13. Becker, H., Naaman, M., Gravano, L.: Beyond trending topics: real-world event identification on Twitter. In: Fifth International AAAI Conference on Weblogs and Social Media (2011)

    Google Scholar 

  14. Livnat, Y., et al.: Visual correlation for situational awareness. In: IEEE Symposium on Information Visualization. IEEE (2005)

    Google Scholar 

  15. Romero-Gomez, R., Yacin N., Antonakakis, M.: Towards designing effective visualizations for DNS-based network threat analysis. In: IEEE Symposium on Visualization for Cyber Security (VizSec), pp. 1–8. IEEE (2017)

    Google Scholar 

  16. Vaitsis, C., Nilsson, G., Zary, N.: Visual analytics in healthcare education: exploring novel ways to analyze and represent big data in undergraduate medical education. PeerJ 2, e683 (2014)

    Article  Google Scholar 

  17. Simpao, A.F., Ahumada, L.M., Rehman, M.A.: Big data and visual analytics in anaesthesia and health care. Br. J. Anaesth. 115(3), 350–356 (2015)

    Article  Google Scholar 

  18. MacEachren, A.M., et al.: Geo-twitter analytics: applications in crisis management. In: 25th International Cartographic Conference (2011)

    Google Scholar 

  19. Rudolph, S., Savikhin, A., Ebert, D.S.: FinVis: applied visual analytics for personal financial planning. In: IEEE Symposium on Visual Analytics Science and Technology. IEEE (2009)

    Google Scholar 

  20. Ko, S., et al.: A survey on visual analysis approaches for financial data. In: Computer Graphics Forum, vol. 35, no. 3, pp. 599–617 (2016)

    Article  Google Scholar 

  21. Shneiderman, B: The eyes have it: a task by data type taxonomy for information visualizations. The craft of information visualization, pp. 364–371 (2003)

    Chapter  Google Scholar 

  22. Nielsen, J.: Why You Only Need to Test with 5 Users. Nielsen Norman Group (2000). https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/, Accessed 17 Oct 2019

Download references

Acknowledgements

This work was supported by the TENSOR (H2020-700024) and the V4Design (H2020-779962) projects, both funded by the European Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aikaterini Katmada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Katmada, A., Kalpakis, G., Tsikrika, T., Andreadis, S., Vrochidis, S., Kompatsiaris, I. (2020). An Extensible Framework for Interactive Real-Time Visualizations of Large-Scale Heterogeneous Multimedia Information from Online Sources. In: Ro, Y., et al. MultiMedia Modeling. MMM 2020. Lecture Notes in Computer Science(), vol 11962. Springer, Cham. https://doi.org/10.1007/978-3-030-37734-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37734-2_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37733-5

  • Online ISBN: 978-3-030-37734-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics