Abstract
This work presents the user-centered design and development of a generic and extensible visualization framework that can be re-used in various scenarios in order to communicate large–scale heterogeneous multimedia information obtained from social media and Web sources, through user-friendly interactive visualizations in real-time. Using the particular framework as a basis, two Web-based dashboards demonstrating the visual analytics components of our framework have been developed. Additionally, three indicative use case scenarios where these dashboards can be employed are described. Finally, preliminary user feedback and improvements are discussed, and directions for further development are proposed on the basis of the findings.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The questions of our survey are not included due to space limitations.
References
Keim, D., Andrienko, G., Fekete, J.-D., Görg, C., Kohlhammer, J., Melançon, G.: Visual analytics: definition, process, and challenges. In: Kerren, A., Stasko, J.T., Fekete, J.-D., North, C. (eds.) Information Visualization. LNCS, vol. 4950, pp. 154–175. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70956-5_7
Averbuch, M., et al.: As you like it: tailorable information visualization. Database Visualization Research Group. Tufts University (2004)
Wong, P.C., Thomas, J.: Visual analytics. IEEE Comput. Graph. Appl. 5, 20–21 (2004)
Kang, Y.A., Gorg, C., Stasko, J.: Evaluating visual analytics systems for investigative analysis: deriving design principles from a case study. In: IEEE Symposium on Visual Analytics Science and Technology, pp. 139–146. IEEE (2009)
Keim, D.A., Mansmann, F., Schneidewind, J., Thomas, J., Ziegler, H.: Visual analytics: scope and challenges. In: Simoff, S.J., Böhlen, M.H., Mazeika, A. (eds.) Visual Data Mining. LNCS, vol. 4404, pp. 76–90. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71080-6_6
Moere, A.V.: Beyond the tyranny of the pixel: exploring the physicality of information visualization. In: 12th International Conference on Information Visualization. IEEE (2008)
Ware, C.: Information Visualization: Perception for Design. Elsevier, Amsterdam (2012)
Behrens, C.: The Form of Facts and Figures: Design Patterns for Interactive Information Visualization (2008)
Jun, E., Steven, L., Salvendy, G.: A visual information processing model to characterize interactive visualization environments. Int. J. Hum.-Comput. Interact. 27(4), 348–363 (2011)
Globus, Al.: Principles of information display for visualization practitioners. Rev. Econ. Bus. Stud. REBS 2, 161 (1994)
Diakopoulos, N., Naaman, M., Kivran-Swaine, F.: Diamonds in the rough: social media visual analytics for journalistic inquiry. In: IEEE Symposium on Visual Analytics Science and Technology. IEEE (2010)
Marcus, A., et al.: Twitinfo: aggregating and visualizing microblogs for event exploration. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM (2011)
Becker, H., Naaman, M., Gravano, L.: Beyond trending topics: real-world event identification on Twitter. In: Fifth International AAAI Conference on Weblogs and Social Media (2011)
Livnat, Y., et al.: Visual correlation for situational awareness. In: IEEE Symposium on Information Visualization. IEEE (2005)
Romero-Gomez, R., Yacin N., Antonakakis, M.: Towards designing effective visualizations for DNS-based network threat analysis. In: IEEE Symposium on Visualization for Cyber Security (VizSec), pp. 1–8. IEEE (2017)
Vaitsis, C., Nilsson, G., Zary, N.: Visual analytics in healthcare education: exploring novel ways to analyze and represent big data in undergraduate medical education. PeerJ 2, e683 (2014)
Simpao, A.F., Ahumada, L.M., Rehman, M.A.: Big data and visual analytics in anaesthesia and health care. Br. J. Anaesth. 115(3), 350–356 (2015)
MacEachren, A.M., et al.: Geo-twitter analytics: applications in crisis management. In: 25th International Cartographic Conference (2011)
Rudolph, S., Savikhin, A., Ebert, D.S.: FinVis: applied visual analytics for personal financial planning. In: IEEE Symposium on Visual Analytics Science and Technology. IEEE (2009)
Ko, S., et al.: A survey on visual analysis approaches for financial data. In: Computer Graphics Forum, vol. 35, no. 3, pp. 599–617 (2016)
Shneiderman, B: The eyes have it: a task by data type taxonomy for information visualizations. The craft of information visualization, pp. 364–371 (2003)
Nielsen, J.: Why You Only Need to Test with 5 Users. Nielsen Norman Group (2000). https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/, Accessed 17 Oct 2019
Acknowledgements
This work was supported by the TENSOR (H2020-700024) and the V4Design (H2020-779962) projects, both funded by the European Commission.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Katmada, A., Kalpakis, G., Tsikrika, T., Andreadis, S., Vrochidis, S., Kompatsiaris, I. (2020). An Extensible Framework for Interactive Real-Time Visualizations of Large-Scale Heterogeneous Multimedia Information from Online Sources. In: Ro, Y., et al. MultiMedia Modeling. MMM 2020. Lecture Notes in Computer Science(), vol 11962. Springer, Cham. https://doi.org/10.1007/978-3-030-37734-2_35
Download citation
DOI: https://doi.org/10.1007/978-3-030-37734-2_35
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-37733-5
Online ISBN: 978-3-030-37734-2
eBook Packages: Computer ScienceComputer Science (R0)