[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Cartesian Genetic Programming with Guided and Single Active Mutations for Designing Combinational Logic Circuits

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2019)

Abstract

The design of digital circuits using Cartesian Genetic Programming (CGP) has been widely investigated but the evolution of complex combinational logic circuits is a hard task for CGP. We introduce here a new mutation operator for CGP that aims to reduce the number of evaluations needed to find a feasible solution by modifying the subgraph of the worst output of the candidate circuits. Also, we propose a variant of the standard evolutionary strategy commonly adopted in CGP, where (i) the Single Active Mutation (SAM) and (ii) the proposed mutation operator is used in order to improve the capacity of CGP in generating feasible circuits. The proposals are applied to a benchmark of combinational logic circuits with multiple outputs and the results obtained are compared to those found by a CGP with SAM. The main advantages observed when both mutation operators are combined are the reduction of the number of objective function evaluations required to find a feasible solution and the improvement in the success rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://revlib.org/functions.php.

  2. 2.

    https://github.com/ciml.

References

  1. Brayton, R.K., Hachtel, G.D., McMullen, C., Sangiovanni-Vincentelli, A.: Logic Minimization Algorithms for VLSI Synthesis, vol. 2. Springer, Heidelberg (1984). https://doi.org/10.1007/978-1-4613-2821-6

    Book  MATH  Google Scholar 

  2. Coello, C.A.C., Aguirre, A.H.: Design of combinational logic circuits through an evolutionary multiobjective optimization approach. AI EDAM 16(1), 39–53 (2002)

    Google Scholar 

  3. Coello, C.A.C., Alba, E., Luque, G.: Comparing different serial and parallel heuristics to design combinational logic circuits. In: Proceedings of the NASA/DoD Conference on Evolvable Hardware, pp. 3–12 (2003)

    Google Scholar 

  4. Coello, C.A.C., Luna, E.H., Aguirre, A.H.: Use of particle swarm optimization to design combinational logic circuits. In: Tyrrell, A.A.M., Haddow, P.C., Torresen, J. (eds.) ICES 2003. LNCS, vol. 2606, pp. 398–409. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36553-2_36

    Chapter  MATH  Google Scholar 

  5. Goldman, B.W., Punch, W.F.: Reducing wasted evaluations in cartesian genetic programming. In: Krawiec, K., Moraglio, A., Hu, T., Etaner-Uyar, A.Ş., Hu, B. (eds.) EuroGP 2013. LNCS, vol. 7831, pp. 61–72. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37207-0_6

    Chapter  Google Scholar 

  6. Husa, J., Kalkreuth, R.: A comparative study on crossover in cartesian genetic programming. In: Castelli, M., Sekanina, L., Zhang, M., Cagnoni, S., García-Sánchez, P. (eds.) EuroGP 2018. LNCS, vol. 10781, pp. 203–219. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77553-1_13

    Chapter  Google Scholar 

  7. Koza, J.R.: Genetic Programming II, Automatic Discovery of Reusable Subprograms. MIT Press, Cambridge (1992)

    Google Scholar 

  8. Lind-Nielsen, J., Cohen, H.: Buddy - a binary decision diagram package (2014). https://sourceforge.net/projects/buddy/

  9. Manfrini, F.A.L., Bernardino, H.S., Barbosa, H.J.C.: A novel efficient mutation for evolutionary design of combinational logic circuits. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 665–674. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6_62

    Chapter  Google Scholar 

  10. Manfrini, F.A.L., Bernardino, H.S., Barbosa, H.J.C.: On heuristics for seeding the initial population of cartesian genetic programming applied to combinational logic circuits. In: Proceedings of GECCO, pp. 105–106 (2016)

    Google Scholar 

  11. Miller, J.F.: An empirical study of the efficiency of learning boolean functions using a cartesian genetic programming approach. In: Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation, vol. 2, pp. 1135–1142. Morgan Kaufmann Pub. Inc. (1999)

    Google Scholar 

  12. Miller, J.F.: Cartesian genetic programming. In: Miller, J. (ed.) Cartesian Genetic Programming, pp. 17–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-17310-3_2

    Chapter  MATH  Google Scholar 

  13. Miller, J.F., Job, D., Vassilev, V.K.: Principles in the evolutionary design of digital circuits - Part I. Genet. Program Evolvable Mach. 1(1–2), 7–35 (2000)

    Article  Google Scholar 

  14. da Silva, J.E., Bernardino, H.: Cartesian genetic programming with crossover for designing combinational logic circuits. In: Proceedings of the 7th Brazilian Conference on Intelligent Systems (BRACIS), pp. 145–150. IEEE (2018)

    Google Scholar 

  15. da Silva, J.E.H., Manfrini, F.A., Bernardino, H.S., Barbosa, H.J.: Biased mutation and tournament selection approaches for designing combinational logic circuits via cartesian genetic programming. In: ENIAC, pp. 835–846 (2018)

    Google Scholar 

  16. Stepney, S., Adamatzky, A. (eds.): Inspired by Nature: Essays Presented to Julian F. Miller on the Occasion of his 60th Birthday. ECC, vol. 28. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67997-6

    Book  Google Scholar 

  17. Turner, A.J., Miller, J.F.: Neutral genetic drift: an investigation using cartesian genetic programming. GP Evolvable Mach. 16(4), 531–558 (2015)

    Article  Google Scholar 

  18. Vasicek, Z.: Cartesian GP in optimization of combinational circuits with hundreds of inputs and thousands of gates. In: Machado, P., et al. (eds.) EuroGP 2015. LNCS, vol. 9025, pp. 139–150. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16501-1_12

    Chapter  Google Scholar 

  19. Vasicek, Z., Sekanina, L.: How to evolve complex combinational circuits from scratch? In: Proceedings of the Conference on Evolvable Systems (ICES), pp. 133–140. IEEE (2014)

    Google Scholar 

Download references

Acknowledgments

We thank the reviewers for your suggestions and the support provided by CNPq (grant 312682/2018-2), FAPEMIG (grant APQ-00337-18), Capes, PPGCC/UFJF, PPGMC/UFJF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heder S. Bernardino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

da Silva, J.E.H., de Souza, L.A.M., Bernardino, H.S. (2019). Cartesian Genetic Programming with Guided and Single Active Mutations for Designing Combinational Logic Circuits. In: Nicosia, G., Pardalos, P., Umeton, R., Giuffrida, G., Sciacca, V. (eds) Machine Learning, Optimization, and Data Science. LOD 2019. Lecture Notes in Computer Science(), vol 11943. Springer, Cham. https://doi.org/10.1007/978-3-030-37599-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37599-7_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37598-0

  • Online ISBN: 978-3-030-37599-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics