Abstract
The design of digital circuits using Cartesian Genetic Programming (CGP) has been widely investigated but the evolution of complex combinational logic circuits is a hard task for CGP. We introduce here a new mutation operator for CGP that aims to reduce the number of evaluations needed to find a feasible solution by modifying the subgraph of the worst output of the candidate circuits. Also, we propose a variant of the standard evolutionary strategy commonly adopted in CGP, where (i) the Single Active Mutation (SAM) and (ii) the proposed mutation operator is used in order to improve the capacity of CGP in generating feasible circuits. The proposals are applied to a benchmark of combinational logic circuits with multiple outputs and the results obtained are compared to those found by a CGP with SAM. The main advantages observed when both mutation operators are combined are the reduction of the number of objective function evaluations required to find a feasible solution and the improvement in the success rate.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Brayton, R.K., Hachtel, G.D., McMullen, C., Sangiovanni-Vincentelli, A.: Logic Minimization Algorithms for VLSI Synthesis, vol. 2. Springer, Heidelberg (1984). https://doi.org/10.1007/978-1-4613-2821-6
Coello, C.A.C., Aguirre, A.H.: Design of combinational logic circuits through an evolutionary multiobjective optimization approach. AI EDAM 16(1), 39–53 (2002)
Coello, C.A.C., Alba, E., Luque, G.: Comparing different serial and parallel heuristics to design combinational logic circuits. In: Proceedings of the NASA/DoD Conference on Evolvable Hardware, pp. 3–12 (2003)
Coello, C.A.C., Luna, E.H., Aguirre, A.H.: Use of particle swarm optimization to design combinational logic circuits. In: Tyrrell, A.A.M., Haddow, P.C., Torresen, J. (eds.) ICES 2003. LNCS, vol. 2606, pp. 398–409. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36553-2_36
Goldman, B.W., Punch, W.F.: Reducing wasted evaluations in cartesian genetic programming. In: Krawiec, K., Moraglio, A., Hu, T., Etaner-Uyar, A.Ş., Hu, B. (eds.) EuroGP 2013. LNCS, vol. 7831, pp. 61–72. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37207-0_6
Husa, J., Kalkreuth, R.: A comparative study on crossover in cartesian genetic programming. In: Castelli, M., Sekanina, L., Zhang, M., Cagnoni, S., García-Sánchez, P. (eds.) EuroGP 2018. LNCS, vol. 10781, pp. 203–219. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77553-1_13
Koza, J.R.: Genetic Programming II, Automatic Discovery of Reusable Subprograms. MIT Press, Cambridge (1992)
Lind-Nielsen, J., Cohen, H.: Buddy - a binary decision diagram package (2014). https://sourceforge.net/projects/buddy/
Manfrini, F.A.L., Bernardino, H.S., Barbosa, H.J.C.: A novel efficient mutation for evolutionary design of combinational logic circuits. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 665–674. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6_62
Manfrini, F.A.L., Bernardino, H.S., Barbosa, H.J.C.: On heuristics for seeding the initial population of cartesian genetic programming applied to combinational logic circuits. In: Proceedings of GECCO, pp. 105–106 (2016)
Miller, J.F.: An empirical study of the efficiency of learning boolean functions using a cartesian genetic programming approach. In: Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation, vol. 2, pp. 1135–1142. Morgan Kaufmann Pub. Inc. (1999)
Miller, J.F.: Cartesian genetic programming. In: Miller, J. (ed.) Cartesian Genetic Programming, pp. 17–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-17310-3_2
Miller, J.F., Job, D., Vassilev, V.K.: Principles in the evolutionary design of digital circuits - Part I. Genet. Program Evolvable Mach. 1(1–2), 7–35 (2000)
da Silva, J.E., Bernardino, H.: Cartesian genetic programming with crossover for designing combinational logic circuits. In: Proceedings of the 7th Brazilian Conference on Intelligent Systems (BRACIS), pp. 145–150. IEEE (2018)
da Silva, J.E.H., Manfrini, F.A., Bernardino, H.S., Barbosa, H.J.: Biased mutation and tournament selection approaches for designing combinational logic circuits via cartesian genetic programming. In: ENIAC, pp. 835–846 (2018)
Stepney, S., Adamatzky, A. (eds.): Inspired by Nature: Essays Presented to Julian F. Miller on the Occasion of his 60th Birthday. ECC, vol. 28. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67997-6
Turner, A.J., Miller, J.F.: Neutral genetic drift: an investigation using cartesian genetic programming. GP Evolvable Mach. 16(4), 531–558 (2015)
Vasicek, Z.: Cartesian GP in optimization of combinational circuits with hundreds of inputs and thousands of gates. In: Machado, P., et al. (eds.) EuroGP 2015. LNCS, vol. 9025, pp. 139–150. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16501-1_12
Vasicek, Z., Sekanina, L.: How to evolve complex combinational circuits from scratch? In: Proceedings of the Conference on Evolvable Systems (ICES), pp. 133–140. IEEE (2014)
Acknowledgments
We thank the reviewers for your suggestions and the support provided by CNPq (grant 312682/2018-2), FAPEMIG (grant APQ-00337-18), Capes, PPGCC/UFJF, PPGMC/UFJF.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
da Silva, J.E.H., de Souza, L.A.M., Bernardino, H.S. (2019). Cartesian Genetic Programming with Guided and Single Active Mutations for Designing Combinational Logic Circuits. In: Nicosia, G., Pardalos, P., Umeton, R., Giuffrida, G., Sciacca, V. (eds) Machine Learning, Optimization, and Data Science. LOD 2019. Lecture Notes in Computer Science(), vol 11943. Springer, Cham. https://doi.org/10.1007/978-3-030-37599-7_33
Download citation
DOI: https://doi.org/10.1007/978-3-030-37599-7_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-37598-0
Online ISBN: 978-3-030-37599-7
eBook Packages: Computer ScienceComputer Science (R0)