Abstract
Attribute-based signature (ABS) is a versatile cryptographic primitive that allows a user possessing a set of attributes from the trusted authority to sign a message with fine-grained control over the identifying information, and the signature will reveal nothing no more than the fact that the attributes of the signer satisfy the predicate with respect to the message. In this paper, we introduce a fully secure and efficient attribute-based signature for inner-product (IP) predicate from lattice assumptions in the random oracle model, in which the admissible IP predicate is more general in contrast to those of the existing lattice-based constructions. More precisely, the proposed scheme is the first attribute-based signature from lattices to support conjunctions, disjunctions, threshold predicates, polynomial evaluations, and CNF/DNF formulas.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_28
Ajtai, M.: Generating hard instances of lattice problems (Extended Abstract). In: STOC 1996, pp. 99–108. ACM (1996). https://doi.org/10.1145/237814.237838
Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. Theory Comput. Syst. 48(3), 535–553 (2011). https://doi.org/10.1007/s00224-010-9278-3
Bansarkhani, R., Kaafarani, A.: Post-Quantum Attribute-Based Signatures from Lattice Assumptions. Cryptology ePrint Archive. http://eprint.iacr.org/2016/823
Datta, P., Okamoto, T., Takashima, K.: Efficient attribute-based signatures for unbounded arithmetic branching programs. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11442, pp. 127–158. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17253-4_5
Ge, A., Ma, C., Zhang, Z.: Attribute-based signature scheme with constant size signature in the standard model. IET Inf. Secur. 6(2), 47–54 (2012). https://doi.org/10.1049/iet-ifs.2011.0094
Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoor for hard lattices and new cryptographic constructions. In: STOC 2008, pp. 197–206. ACM (2008). https://doi.org/10.1145/1374376.1374407
Ghadafi, E.: Stronger security notions for decentralized traceable attribute-based signatures and more efficient constructions. In: Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 391–409. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16715-2_21
Gordon, S.D., Katz, J., Vaikuntanathan, V.: A group signature scheme from lattice assumptions. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 395–412. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_23
Herranz, J., Laguillaumie, F., Libert, B., Ràfols, C.: Short attribute-based signatures for threshold predicates. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 51–67. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27954-6_4
El Kaafarani, A., Chen, L., Ghadafi, E., Davenport, J.: Attribute-based signatures with user-controlled linkability. In: Gritzalis, D., Kiayias, A., Askoxylakis, I. (eds.) CANS 2014. LNCS, vol. 8813, pp. 256–269. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12280-9_17
El Kaafarani, A., Ghadafi, E.: Attribute-based signatures with user-controlled linkability without random oracles. In: O’Neill, M. (ed.) IMACC 2017. LNCS, vol. 10655, pp. 161–184. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71045-7_9
El Kaafarani, A., Ghadafi, E., Khader, D.: Decentralized traceable attribute-based signatures. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 327–348. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04852-9_17
El Kaafarani, A., Katsumata, S.: Attribute-based signatures for unbounded circuits in the ROM and efficient instantiations from lattices. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp. 89–119. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-5_4
Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_9
Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently secure identification schemes based on the worst-case hardness of lattice problems. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 372–389. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-7_23
Li, J., Au, M., Susilo, W., Xie, D., Ren, H.: Attribute-based signature and its applications. In: ASIACCS 2010, pp. 60–69. ACM (2010). https://doi.org/10.1145/1755688.1755697
Ling, S., Nguyen, K., Wang, H., Xu, Y.: Lattice-based group signatures: achieving full dynamicity with ease. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 293–312. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61204-1_15
Ling, S., Nguyen, K., Wang, H., Xu, Y.: Constant-size group signatures from lattices. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp. 58–88. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-5_3
Ling, S., Nguyen, K., Roux-Langlois, A., Wang, H.: A lattice-based group signature scheme with verifier-local revocation. Theor. Comput. Sci. 730, 1–20 (2018). https://doi.org/10.1016/j.tcs.2018.03.027
Maji, H., Prabhakaran, M., Rosulek, M.: Attribute-Based Signatures: Achieving Attribute-Privacy and Collusion-Resistance. IACR Cryptology ePrint Archive. http://eprint.iacr.org/2008/328
Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-based signatures. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 376–392. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19074-2_24
Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_41
Okamoto, T., Takashima, K.: Efficient attribute-based signatures for non-monotone predicates in the standard model. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 35–52. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-8_3
Okamoto, T., Takashima, K.: Decentralized attribute-based signatures. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 125–142. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_9
Urquidi, M., Khader, D., Lancrenon, J., Chen, L.: Attribute-based signatures with controllable linkability. In: Yung, M., Zhang, J., Yang, Z. (eds.) INTRUST 2015. LNCS, vol. 9565, pp. 114–129. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31550-8_8
Wang, Q., Chen, S.: Attribute-based signature for threshold predicates from lattices. Secur. Commun. Netw. 8(5), 811–821 (2015). https://doi.org/10.1002/sec.1038
Wang, Q., Chen, S., Ge, A.: A new lattice-based threshold attribute-based signature scheme. In: Lopez, J., Wu, Y. (eds.) ISPEC 2015. LNCS, vol. 9065, pp. 406–420. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17533-1_28
Acknowledgments
The authors thank the anonymous reviewers of CSS 2019 for their helpful comments, San Ling, and Khoa Nguyen for helpful discussions. This research is supported by the National Natural Science Foundation of China under Grant 61772477.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, Y., Liu, X., Hu, Y., Zhang, Q., Jia, H. (2019). Attribute-Based Signatures for Inner-Product Predicate from Lattices. In: Vaidya, J., Zhang, X., Li, J. (eds) Cyberspace Safety and Security. CSS 2019. Lecture Notes in Computer Science(), vol 11982. Springer, Cham. https://doi.org/10.1007/978-3-030-37337-5_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-37337-5_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-37336-8
Online ISBN: 978-3-030-37337-5
eBook Packages: Computer ScienceComputer Science (R0)