Abstract
This chapter covers two unrelated topics on HHO methods for linear diffusion problems: an a posteriori error analysis for the Poisson problem and the extension of the HHO method to the case of a diffusion tensor that varies inside each element. These topics build up on Chaps. 1 and 2, and can be used in a short introductory course to present more advanced notions on HHO.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
The authors are grateful to Lorenzo Botti and Alessandro Colombo (Università di Bergamo) for providing this modified version of MGridGen.
References
Y. Achdou, C. Bernardi, F. Coquel, A priori and a posteriori analysis of finite volume discretizations of Darcy’s equations. Numer. Math. 96(1), 17–42 (2003). https://doi.org/10.1007/s00211-002-0436-7
G. Allaire, Analyse Numérique et Optimisation (Les éditions de l’École Polytechnique, Palaiseau, 2009)
P.F. Antonietti, S. Giani, P. Houston, hp-version composite discontinuous Galerkin methods for elliptic problems on complicated domains. SIAM J. Sci. Comput. 35(3), A1417–A1439 (2013). https://doi.org/10.1137/120877246
F. Bassi, L. Botti, A. Colombo, D.A. Di Pietro, P. Tesini, On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations. J. Comput. Phys. 231(1), 45–65 (2012). https://doi.org/10.1016/j.jcp.2011.08.018
M. Bebendorf, A note on the Poincaré inequality for convex domains. Z. Anal. Anwendungen 22(4), 751–756 (2003). https://doi.org/10.4171/ZAA/1170
S.C. Brenner, R. Scott. The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, vol. 15, 3rd edn. (Springer, New York, 2008), pp. xviii+397. ISBN: 978-0-387-75933-3. https://doi.org/10.1007/978-0-387-75934-0
C. Carstensen, M. Feischl, M. Page, D. Praetorius, Axioms of adaptivity. Comput. Math. Appl. Int. J.67(6), 1195–1253 (2014). https://doi.org/10.1016/j.camwa.2013.12.003
D.A. Di Pietro, A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods. Mathématiques & Applications [Mathematics & Applications], vol. 69 (Springer, Berlin, 2012), pp. xviii+384. ISBN: 978-3-642-22979-4. https://doi.org/10.1007/978-3-642-22980-0
D.A. Di Pietro, A. Ern, Arbitrary-order mixed methods for heterogeneous anisotropic diffusion on general meshes. IMA J. Numer. Anal. 37(1), 40–63 (2017). https://doi.org/10.1093/imanum/drw003
D.A. Di Pietro, R. Specogna, An a posteriori-driven adaptive Mixed High-Order method with application to electrostatics. J. Comput. Phys. 326(1), 35–55 (2016). https://doi.org/10.1016/j.jcp.2016.08.041
D.A. Di Pietro, R. Tittarelli, An introduction to hybrid high-order methods, in Numerical Methods for PDEs. State of the Art Techniques, ed. by L. Formaggia, D.A. Di Pietro, A. Ern. SEMA-SIMAI, vol. 15 (Springer, Berlin, 2018). ISBN: 978-3-319-94675-7 (Print) 978-3-319-94676-4 (eBook). https://doi.org/10.1007/978-3-319-94676-4_4
J. Droniou, R. Eymard, A mixed finite volume scheme for anisotropic diffusion problems on any grid. Numer. Math. 105, 35–71 (2006). https://doi.org/10.1007/s00211-006-0034-1
A. Ern, J.-L. Guermond, Theory and Practice of Finite Elements. Applied Mathematical Sciences, vol. 159 (Springer, New York, 2004). https://doi.org/10.1007/978-1-4757-4355-5
G. Fichera, Asymptotic behaviour of the electric field and density of the electric charge in the neighbourhood of singular points of a conducting surface. Russ. Math. Surv. 30(3), 107 (1975). http://stacks.iop.org/0036-0279/30/i=3/a=R03
R. Herbin, F. Hubert, Benchmark on discretization schemes for anisotropic diffusion problems on general grids, in Finite Volumes for Complex Applications V, ed. by R. Eymard, J.-M. Hérard (Wiley, Hoboken, 2008), pp. 659–692
O.A. Karakashian, F. Pascal, A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems. SIAM J. Numer. Anal. 41(6), 2374–2399 (2003). https://doi.org/10.1137/S0036142902405217
K.Y. Kim, A posteriori error estimators for locally conservative methods of nonlinear elliptic problems. Appl. Numer. Math. 57(9), 1065–1080 (2007). https://doi.org/10.1016/j.apnum.2006.09.010
C. Le Potier, A finite volume method for the approximation of highly anisotropic diffusion operators on unstructured meshes, in Finite Volumes for Complex Applications IV (ISTE, London, 2005), pp. 401–412
I. Moulitsas, G. Karypis, MGridGen/ParmGridGen, Serial/Parallel Library for Generating Coase Meshes for Multigrid Methods. Technical Report Version 1.0, University of Minnesota, Department of Computer Science/Army HPC Research Center (2001)
Y. Notay, An aggregation-based algebraic multigrid method. Electron. Trans. Numer. Anal. 37(6), 123–146 (2010)
L.E. Payne, H.F. Weinberger, An optimal Poincaré inequality for convex domains. Arch. Rational Mech. Anal. 5, 286–292 (1960). https://doi.org/10.1007/BF00252910
J. Schöberl, NETGEN An advancing front 2D/3D-mesh generator based on abstract rules. Comput. Vis. Sci. 1(1), 41–52 (1997). https://doi.org/10.1007/s007910050004
R. Verfürth, A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques (Teubner-Wiley, Stuttgart, 1996), p. 127. ISBN: 3-519-02605-8
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Di Pietro, D.A., Droniou, J. (2020). Complements on Pure Diffusion. In: The Hybrid High-Order Method for Polytopal Meshes. MS&A, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-030-37203-3_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-37203-3_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-37202-6
Online ISBN: 978-3-030-37203-3
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)