[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Complements on Pure Diffusion

  • Chapter
  • First Online:
The Hybrid High-Order Method for Polytopal Meshes

Part of the book series: MS&A ((MS&A,volume 19))

  • 724 Accesses

Abstract

This chapter covers two unrelated topics on HHO methods for linear diffusion problems: an a posteriori error analysis for the Poisson problem and the extension of the HHO method to the case of a diffusion tensor that varies inside each element. These topics build up on Chaps. 1 and 2, and can be used in a short introductory course to present more advanced notions on HHO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 95.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 119.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 119.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The authors are grateful to Lorenzo Botti and Alessandro Colombo (Università di Bergamo) for providing this modified version of MGridGen.

References

  1. Y. Achdou, C. Bernardi, F. Coquel, A priori and a posteriori analysis of finite volume discretizations of Darcy’s equations. Numer. Math. 96(1), 17–42 (2003). https://doi.org/10.1007/s00211-002-0436-7

    Article  MathSciNet  Google Scholar 

  2. G. Allaire, Analyse Numérique et Optimisation (Les éditions de l’École Polytechnique, Palaiseau, 2009)

    Google Scholar 

  3. P.F. Antonietti, S. Giani, P. Houston, hp-version composite discontinuous Galerkin methods for elliptic problems on complicated domains. SIAM J. Sci. Comput. 35(3), A1417–A1439 (2013). https://doi.org/10.1137/120877246

  4. F. Bassi, L. Botti, A. Colombo, D.A. Di Pietro, P. Tesini, On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations. J. Comput. Phys. 231(1), 45–65 (2012). https://doi.org/10.1016/j.jcp.2011.08.018

    Article  MathSciNet  Google Scholar 

  5. M. Bebendorf, A note on the Poincaré inequality for convex domains. Z. Anal. Anwendungen 22(4), 751–756 (2003). https://doi.org/10.4171/ZAA/1170

    Article  MathSciNet  Google Scholar 

  6. S.C. Brenner, R. Scott. The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, vol. 15, 3rd edn. (Springer, New York, 2008), pp. xviii+397. ISBN: 978-0-387-75933-3. https://doi.org/10.1007/978-0-387-75934-0

  7. C. Carstensen, M. Feischl, M. Page, D. Praetorius, Axioms of adaptivity. Comput. Math. Appl. Int. J.67(6), 1195–1253 (2014). https://doi.org/10.1016/j.camwa.2013.12.003

    Article  MathSciNet  Google Scholar 

  8. D.A. Di Pietro, A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods. Mathématiques & Applications [Mathematics & Applications], vol. 69 (Springer, Berlin, 2012), pp. xviii+384. ISBN: 978-3-642-22979-4. https://doi.org/10.1007/978-3-642-22980-0

  9. D.A. Di Pietro, A. Ern, Arbitrary-order mixed methods for heterogeneous anisotropic diffusion on general meshes. IMA J. Numer. Anal. 37(1), 40–63 (2017). https://doi.org/10.1093/imanum/drw003

    Article  MathSciNet  Google Scholar 

  10. D.A. Di Pietro, R. Specogna, An a posteriori-driven adaptive Mixed High-Order method with application to electrostatics. J. Comput. Phys. 326(1), 35–55 (2016). https://doi.org/10.1016/j.jcp.2016.08.041

    Article  MathSciNet  Google Scholar 

  11. D.A. Di Pietro, R. Tittarelli, An introduction to hybrid high-order methods, in Numerical Methods for PDEs. State of the Art Techniques, ed. by L. Formaggia, D.A. Di Pietro, A. Ern. SEMA-SIMAI, vol. 15 (Springer, Berlin, 2018). ISBN: 978-3-319-94675-7 (Print) 978-3-319-94676-4 (eBook). https://doi.org/10.1007/978-3-319-94676-4_4

  12. J. Droniou, R. Eymard, A mixed finite volume scheme for anisotropic diffusion problems on any grid. Numer. Math. 105, 35–71 (2006). https://doi.org/10.1007/s00211-006-0034-1

    Article  MathSciNet  Google Scholar 

  13. A. Ern, J.-L. Guermond, Theory and Practice of Finite Elements. Applied Mathematical Sciences, vol. 159 (Springer, New York, 2004). https://doi.org/10.1007/978-1-4757-4355-5

  14. G. Fichera, Asymptotic behaviour of the electric field and density of the electric charge in the neighbourhood of singular points of a conducting surface. Russ. Math. Surv. 30(3), 107 (1975). http://stacks.iop.org/0036-0279/30/i=3/a=R03

  15. R. Herbin, F. Hubert, Benchmark on discretization schemes for anisotropic diffusion problems on general grids, in Finite Volumes for Complex Applications V, ed. by R. Eymard, J.-M. Hérard (Wiley, Hoboken, 2008), pp. 659–692

    MATH  Google Scholar 

  16. O.A. Karakashian, F. Pascal, A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems. SIAM J. Numer. Anal. 41(6), 2374–2399 (2003). https://doi.org/10.1137/S0036142902405217

    Article  MathSciNet  Google Scholar 

  17. K.Y. Kim, A posteriori error estimators for locally conservative methods of nonlinear elliptic problems. Appl. Numer. Math. 57(9), 1065–1080 (2007). https://doi.org/10.1016/j.apnum.2006.09.010

    Article  MathSciNet  Google Scholar 

  18. C. Le Potier, A finite volume method for the approximation of highly anisotropic diffusion operators on unstructured meshes, in Finite Volumes for Complex Applications IV (ISTE, London, 2005), pp. 401–412

    MATH  Google Scholar 

  19. I. Moulitsas, G. Karypis, MGridGen/ParmGridGen, Serial/Parallel Library for Generating Coase Meshes for Multigrid Methods. Technical Report Version 1.0, University of Minnesota, Department of Computer Science/Army HPC Research Center (2001)

    Google Scholar 

  20. Y. Notay, An aggregation-based algebraic multigrid method. Electron. Trans. Numer. Anal. 37(6), 123–146 (2010)

    MathSciNet  MATH  Google Scholar 

  21. L.E. Payne, H.F. Weinberger, An optimal Poincaré inequality for convex domains. Arch. Rational Mech. Anal. 5, 286–292 (1960). https://doi.org/10.1007/BF00252910

    Article  MathSciNet  Google Scholar 

  22. J. Schöberl, NETGEN An advancing front 2D/3D-mesh generator based on abstract rules. Comput. Vis. Sci. 1(1), 41–52 (1997). https://doi.org/10.1007/s007910050004

    Article  Google Scholar 

  23. R. Verfürth, A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques (Teubner-Wiley, Stuttgart, 1996), p. 127. ISBN: 3-519-02605-8

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Di Pietro, D.A., Droniou, J. (2020). Complements on Pure Diffusion. In: The Hybrid High-Order Method for Polytopal Meshes. MS&A, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-030-37203-3_4

Download citation

Publish with us

Policies and ethics