Abstract
In a short time, the data warehouse (DW) technology took an important place in the academic and industrial landscapes. This place materialized in the large majority of engineering and management schools that adopted it in their curriculum and in the small, medium-size and large companies that enhanced their decision making capabilities thanks to it. The 1990s saw the advent of conferences such as DaWaK and DOLAP that carried the acronyms DW and OLAP in their titles. Then, all of a sudden, this technology has been upset by the arrival of Big Data. Consequently, those actors have replaced DW and OLAP by Big Data Analytics. We are well placed to assert that this brutal move may have a negative impact on schools, academia, and industry. This technology is not dead, today’s context, with the connected world and Web of Data, is more favorable than when building DW merely stemmed from company internal sources. In this invited paper, we attempt to answer the following question: how does DW technology interact with Linked Open Data (LOD)? To answer the question, we provide a complete vision to augment the traditional DW with LOD, to capture and quantify the added value generated through this interaction. This vision covers the main steps of the DW life-cycle. This value is estimated through two different perspectives: (i) a source-oriented vision, by calculating the rate of the DW augmentation in terms of multidimensional concepts and instances, and (ii) a goal-oriented vision where the value is calculated according to the ability of the DW to estimate the performance levels of defined goals that reflect the strategy of a company, using the defined DW of the case study of a leading Algerian company.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
References
Abelló Gamazo, A., Gallinucci, E., Golfarelli, M., Rizzi Bach, S., Romero Moral, O.: Towards exploratory OLAP on linked data. In: SEBD, pp. 86–93 (2016)
Baldacci, L., Golfarelli, M., Graziani, S., Rizzi, S.: QETL: an approach to on-demand ETL from non-owned data sources. DKE 112, 17–37 (2017)
Barone, D., Jiang, L., Amyot, D., Mylopoulos, J.: Reasoning with key performance indicators. In: Johannesson, P., Krogstie, J., Opdahl, A.L. (eds.) PoEM 2011. LNBIP, vol. 92, pp. 82–96. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24849-8_7
Bellatreche, L.: Value-driven approach for BI application design. Dagstuhl Reports: Next Generation Domain Specific Conceptual Modeling: Principles and Methods (Dagstuhl Seminar 18471), vol. 8, no. 11, p. 69 (2019)
Berkani, N., Bellatreche, L., Benatallah, B.: A value-added approach to design BI applications. In: Madria, S., Hara, T. (eds.) DaWaK 2016. LNCS, vol. 9829, pp. 361–375. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43946-4_24
Berkani, N., Bellatreche, L., Guittet, L.: ETL processes in the era of variety. In: Hameurlain, A., Wagner, R., Benslimane, D., Damiani, E., Grosky, W.I. (eds.) Transactions on Large-Scale Data- and Knowledge-Centered Systems XXXIX. LNCS, vol. 11310, pp. 98–129. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-58415-6_4
Berkani, N., Bellatreche, L., Khouri, S., Ordonez, C.: Value-driven approach for designing extended data warehouses. In: DOLAP (2019)
Božič, K., Dimovski, V.: Business intelligence and analytics for value creation: the role of absorptive capacity. IJIM 46, 93–103 (2019)
Chakrabarti, S., Sarawagi, S., Dom, B.: Mining surprising patterns using temporal description length. In: VLDB, pp. 606–617 (1998)
Chen, H., Chiang, R.H., Storey, V.C.: Business intelligence and analytics: from big data to big impact. MIS Q. 36(4), 1165–1188 (2012)
Corrales-Garay, D., Mora-Valentín, E., Ortiz-de-Urbina-Criado, M.: Open data for open innovation: an analysis of literature characteristics. Futur. Internet 11(3), 77–102 (2019)
Deb Nath, R.P., Hose, K., Pedersen, T.B.: Towards a programmable semantic extract-transform-load framework for semantic data warehouses. In: DOLAP, pp. 15–24 (2015)
Dehdouh, K.: Building OLAP cubes from columnar NoSQL data warehouses. In: Bellatreche, L., Pastor, Ó., Almendros Jiménez, J.M., Aït-Ameur, Y. (eds.) MEDI 2016. LNCS, vol. 9893, pp. 166–179. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45547-1_14
Domingues, M.A., Jorge, A.M., Soares, C., Leal, J.P., Machado, P.: A data warehouse for web intelligence. In: 13th Portuguese Conference on Artificial Intelligence (EPIA), pp. 487–499 (2007)
Gallinucci, E., Golfarelli, M., Rizzi, S., Abelló, A., Romero, O.: Interactive multidimensional modeling of linked data for exploratory OLAP. Inf. Syst. 77, 86–104 (2018)
Golfarelli, M., Maio, D., Rizzi, S.: The dimensional fact model: a conceptual model for data warehouses. Int. J. Cooper. Inf. Syst. 7(02n03), 215–247 (1998)
Golfarelli, M., Rizzi, S., Vrdoljak, B.: Data warehouse design from XML sources. In: ACM OLAP, pp. 40–47 (2001)
Gordijn, J., Akkermans, J.: Value-based requirements engineering: exploring innovative e-commerce ideas. Requir. Eng. 8(2), 114–134 (2003)
Guarino, N., Andersson, B., Johannesson, P., Livieri, B.: Towards an ontology of value ascription. In: FOIS, pp. 331–344 (2016)
Hoffart, J., et al.: YAGO2: exploring and querying world knowledge in time, space, context, and many languages. In: WWW, pp. 229–232 (2011)
Horkoff, J., et al.: Strategic business modeling: representation and reasoning. SSM 13(3), 1015–1041 (2014)
Khouri, S., Ghomari, A.R., Aouimer, Y.: Thinking the incorporation of LOD in semantic cubes as a strategic decision. In: Schewe, K.-D., Singh, N.K. (eds.) MEDI 2019. LNCS, vol. 11815, pp. 287–302. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32065-2_20
Khouri, S., Lanasri, D., Saidoune, R., Boudoukha, K., Bellatreche, L.: LogLInc: LoG queries of linked open data investigator for cube design. In: Hartmann, S., Küng, J., Chakravarthy, S., Anderst-Kotsis, G., Tjoa, A.M., Khalil, I. (eds.) DEXA 2019. LNCS, vol. 11706, pp. 352–367. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27615-7_27
Khouri, S., Semassel, K., Bellatreche, L.: Managing data warehouse traceability: a life-cycle driven approach. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.) CAiSE 2015. LNCS, vol. 9097, pp. 199–213. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19069-3_13
Larson, D., Chang, V.: A review and future direction of agile, business intelligence, analytics and data science. Int. J. Inf. Manag. 36(5), 700–710 (2016)
LaValle, S., Lesser, E., Shockley, R., Hopkins, M.S., Kruschwitz, N.: Big data, analytics and the path from insights to value. MIT Sloan Manag. Rev. 52(2), 21 (2011)
Llave, M.R.: Data lakes in business intelligence: reporting from the trenches. Proc. Comput. Sci. 138, 516–524 (2018)
McAfee, A., Brynjolfsson, E., Davenport, T.H., Patil, D., Barton, D.: Big data: the management revolution. Harv. Bus. Rev. 90(10), 60–68 (2012)
Mithas, S., Lee, M.R., Earley, S., Murugesan, S., Djavanshir, R.: Leveraging big data and business analytics. IT Prof. 15(6), 18–20 (2013)
Nebot, V., Berlanga, R.: Building data warehouses with semantic data. In: Proceedings of the 2010 EDBT/ICDT Workshops, p. 9. ACM (2010)
Rehman, N.U., Weiler, A., Scholl, M.H.: OLAPing social media: the case of Twitter. In: IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1139–1146 (2013)
Rizzi, S., Gallinucci, E., Golfarelli, M., Abelló, A., Romero, O.: Towards exploratory OLAP on linked data. In: SEBD, pp. 86–93 (2016)
Sales, T.P., Baião, F., Guizzardi, G., Almeida, J.P.A., Guarino, N., Mylopoulos, J.: The common ontology of value and risk. In: Trujillo, J.C., et al. (eds.) ER 2018. LNCS, vol. 11157, pp. 121–135. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00847-5_11
Sales, T.P., Guarino, N., Guizzardi, G., Mylopoulos, J.: An ontological analysis of value propositions. In: EDOC, pp. 184–193 (2017)
Silva Souza, V.E., Mazon, J.N., Garrigos, I., Trujillo, J., Mylopoulos, J.: Monitoring strategic goals in data warehouses with awareness requirements. In: ACM SAC, pp. 10–75 (2012)
Thew, S., Sutcliffe, A.: Value-based requirements engineering: method and experience. Requir. Eng. 23(4), 443–464 (2018)
Vrdoljak, B., Banek, M., Rizzi, S.: Designing web warehouses from XML schemas. In: Kambayashi, Y., Mohania, M., Wöß, W. (eds.) DaWaK 2003. LNCS, vol. 2737, pp. 89–98. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45228-7_10
Wegmann, A.: On the systemic enterprise architecture methodology (SEAM). In: ICEIS, pp. 483–490 (2003)
Yangui, R., Nabli, A., Gargouri, F.: Towards data warehouse schema design from social networks-dynamic discovery of multidimensional concepts. In: ICEIS, no. 1, pp. 338–345 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Khouri, S., Berkani, N., Bellatreche, L., Lanasri, D. (2019). Data Cube Is Dead, Long Life to Data Cube in the Age of Web Data. In: Madria, S., Fournier-Viger, P., Chaudhary, S., Reddy, P. (eds) Big Data Analytics. BDA 2019. Lecture Notes in Computer Science(), vol 11932. Springer, Cham. https://doi.org/10.1007/978-3-030-37188-3_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-37188-3_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-37187-6
Online ISBN: 978-3-030-37188-3
eBook Packages: Computer ScienceComputer Science (R0)