Abstract
We propose online-learning complex-valued neural networks (CVNN) to predict future channel states in fast fading multipath mobile communications. A communication channel is represented by complex amplitude. Then, CVNNs are intrinsically suitable for fading channel prediction by utilizing its high generalization ability in the complex-amplitude domain. In this paper, we introduce regularization dynamics to make the CVNN structure dynamically changing in accordance with the changes in the multipath situations. We demonstrate the online adaptability when the scattering environment changes.
A. Hirose—A part of this work was supported by JSPS KAKANHI under Grant 15H02756 and Grant 18H04105, and a part by Tohoku University RIEC Cooperative Research Project.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arima, Y., Hirose, A.: Performance dependence on system parameters in millimeter-wave active imaging based on complex-valued neural networks to classify complex texture. IEEE Access 5, 22927–22939 (2017). http://ieeexplore.ieee.org/document/8036195/
Arredondo, A., Dandekar, K., Xu, G.: Vector channel modeling and prediction for the improvement of downlink received power. IEEE Trans. Commun. 50(7), 1121–1129 (2002). http://ieeexplore.ieee.org/document/1021044/
Barakat, M., Druaux, F., Lefebvre, D., Khalil, M., Mustapha, O.: Self adaptive growing neural network classifier for faults detection and diagnosis. Neurocomputing 74(18), 3865–3876 (2011). https://doi.org/10.1016/j.neucom.2011.08.001. http://linkinghub.elsevier.com/retrieve/pii/S0925231211004425
Bui, H.P., Ogawa, Y., Nishimura, T., Ohgane, T.: Performance evaluation of a multi-user MIMO system with prediction of time-varying indoor channels. IEEE Trans. Antennas Propag. 61(1), 371–379 (2013). http://ieeexplore.ieee.org/document/6280628/
Bui, N., Cesana, M., Hosseini, S.A., Liao, Q., Malanchini, I., Widmer, J.: A survey of anticipatory mobile networking: context-based classification, prediction methodologies, and optimization techniques. IEEE Commun. Surv. Tutorials 19(3), 1790–1821 (2017). http://ieeexplore.ieee.org/document/7904647/
Candès, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006). https://doi.org/10.1002/cpa.20124
Cho, Y.S., Kim, J., Yang, W.Y., Kang, C.G.: MIMO-OFDM Wireless Communications with MATLAB®. Wiley, Chichester (2010). https://doi.org/10.1002/9780470825631
Ding, T., Hirose, A.: Fading channel prediction based on combination of complex-valued neural networks and chirp Z-transform. IEEE Trans. Neural Netw. Learn. Syst. 25(9), 1686–1695 (2014). https://doi.org/10.1007/978-3-319-12637-1_22. http://ieeexplore.ieee.org/document/6755477/
Ding, T., Hirose, A.: Fading channel prediction based on self-optimizing neural networks. In: Loo, C.K., Yap, K.S., Wong, K.W., Teoh, A., Huang, K. (eds.) ICONIP 2014. LNCS, vol. 8834, pp. 175–182. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12637-1_22
Donoho, D.L., Tanner, J.: Counting faces of randomly projected polytopes when the projection radically lowers dimension. J. Am. Math. Soc. 22(1), 1–53 (2008). http://www.ams.org/journal-getitem?pii=S0894-0347-08-00600-0
Duel-Hallen, A.: Fading channel prediction for mobile radio adaptive transmission systems. Proc. IEEE 95(12), 2299–2313 (2007). http://ieeexplore.ieee.org/document/4389753/
Duel-Hallen, A., Hallen, H., Yang, T.-S.: Long range prediction and reduced feedback for mobile radio adaptive OFDM systems. IEEE Trans. Wirel. Commun. 5(10), 2723–2733 (2006). http://ieeexplore.ieee.org/document/1705934/
Elad, M.: Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing. Springer, Berlin (2010)
Elman, J.L.: Learning and development in neural networks: the importance of starting small. Cognition 48(1), 71–99 (1993). http://linkinghub.elsevier.com/retrieve/pii/0010027793900584
Eraslan, E., Daneshrad, B., Lou, C.Y.: Performance indicator for MIMO MMSE receivers in the presence of channel estimation error. IEEE Wirel. Commun. Lett. 2(2), 211–214 (2013). http://ieeexplore.ieee.org/document/6425374/
Eyceoz, T., Duel-Hallen, A., Hallen, H.: Deterministic channel modeling and long range prediction of fast fading mobile radio channels. IEEE Commun. Lett. 2(9), 254–256 (1998). http://ieeexplore.ieee.org/document/718494/
Hara, T., Hirose, A.: Plastic mine detecting system using complex-valued self-organizing map that deals with multiple-frequency interferometric images. Neural Netw. 17(8–9), 1201–1210 (2004)
Hirose, A.: Applications of complex-valued neural networks to coherent optical computing using phase-sensitive detection scheme. Inf. Sci.-Appl. 2, 103–117 (1994)
Hirose, A.: Complex-Valued Neural Networks, vol. 400, 2nd edn. Springer, New York (2012)
Hirose, A., Eckmiller, R.: Coherent optical neural networks that have optical-frequency-controlled behavior and generalization ability in the frequency domain. Appl. Optics 35(5), 836 (1996). https://doi.org/10.1002/rnc.592. https://www.osapublishing.org/abstract.cfm?URI=ao-35-5-836
Hirose, A., Yoshida, S.: Generalization characteristics of complex-valued feedforward neural networks in relation to signal coherence. IEEE Trans. Neural Netw. Learn. Syst. 23, 541–551 (2012)
Ishikawa, M.: Structural learning with forgetting. Neural Netw. 9(3), 509–521 (1996). http://linkinghub.elsevier.com/retrieve/pii/0893608096836963
Jakes, W.: Microwave Mobile Communications, 2nd edn. Wiley, New York (1994). http://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5263365%5Cnieeexplore.ieee.org/search/srchabstract.jsp?arnumber=5263390
Karnin, E.: A simple procedure for pruning back-propagation trained neural networks. IEEE Trans. Neural Netw. 1(2), 239–242 (1990). http://ieeexplore.ieee.org/document/80236/
Kawata, S., Hirose, A.: Frequency-multiplexed logic circuit based on a coherent optical neural network. Appl. Opt. 44(19), 4053–4059 (2005)
Liu, W., Yang, L.L., Lajos, H.: Recurrent neural network based narrowband channel prediction. In: 2006 IEEE 63rd Vehicular Technology Conference, vol. 5, pp. 2173–2177. IEEE (2006). http://ieeexplore.ieee.org/document/1683241/
Maehara, F., Sasamori, F., Tkahata, F.: Linear predictive maximal ratio combining transmitter diversity for OFDM-TDMA/TDD systems. IEICE Trans. Commun. E86–B(1), 221–229 (2003)
Potter, C., Venayagamoorthy, G.K., Kosbar, K.: RNN based MIMO channel prediction. Signal Process. 90(2), 440–450 (2010). http://linkinghub.elsevier.com/retrieve/pii/S0165168409003120
Ramachandram, D., Taylor, G.W.: Deep multimodal learning: a survey on recent advances and trends. IEEE Signal Process. Mag. 34(6), 96–108 (2017). http://ieeexplore.ieee.org/document/8103116/
Reed, R.: Pruning algorithms-a survey. IEEE Trans. Neural Netw. 4(5), 740–747 (1993). http://ieeexplore.ieee.org/document/248452/
Ren, X., Wu, J., Johansson, K.H., Shi, G., Shi, L.: Infinite horizon optimal transmission power control for remote state estimation over fading channels. IEEE Trans. Autom. Control 63(1), 85–100 (2018). http://ieeexplore.ieee.org/document/7935515/
Sharma, P., Chandra, K.: Prediction of state transitions in rayleigh fading channels. IEEE Trans. Veh. Technol. 56(2), 416–425 (2007). http://ieeexplore.ieee.org/document/4138045/
Sui, Y., Yu, W., Luo, Q.: Jointly optimized extreme learning machine for short-term prediction of fading channel. IEEE Access 6, 49029–49039 (2018). https://ieeexplore.ieee.org/document/8457080/
Tan, S., Hirose, A.: Low-calculation-cost fading channel prediction using chirp Z-transform. Electron. Lett. 45(8), 418 (2009). http://digital-library.theiet.org/content/journals/10.1049/el.2009.3472
Lu, T.-C., Yu, G.-R., Juang, J.-C.: Quantum-based algorithm for optimizing artificial neural networks. IEEE Trans. Neural Netw. Learn. Syst. 24(8), 1266–1278 (2013). http://ieeexplore.ieee.org/document/6507335/
Valle, M.E.: Complex-valued recurrent correlation neural networks. IEEE Trans. Neural Netw. Learn. Syst. 25(9), 1600–1612 (2014). http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6866912
Zhao, Y., Gao, H., Beaulieu, N.C., Chen, Z., Ji, H.: Echo state network for fast channel prediction in ricean fading scenarios. IEEE Commun. Lett. 21(3), 672–675 (2017). http://ieeexplore.ieee.org/document/7755792/
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Ding, T., Hirose, A. (2019). Proposal of Online Regularization for Dynamical Structure Optimization in Complex-Valued Neural Networks. In: Gedeon, T., Wong, K., Lee, M. (eds) Neural Information Processing. ICONIP 2019. Lecture Notes in Computer Science(), vol 11954. Springer, Cham. https://doi.org/10.1007/978-3-030-36711-4_34
Download citation
DOI: https://doi.org/10.1007/978-3-030-36711-4_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-36710-7
Online ISBN: 978-3-030-36711-4
eBook Packages: Computer ScienceComputer Science (R0)