Abstract
Fees are used in Bitcoin to prioritize transactions. Transactions with high associated fee are usually included in a block faster than those with lower fees. Users would like to pay just the minimum amount to make the transaction confirmed in the desired time. Fees are collected as a reward when transactions are included in a block so, on the other perspective, miners usually process first the most profitable transactions, i.e. the one with higher fee rate. Bitcoin is a dynamic system influenced by several variables, such as transaction arrival time and block discovery time making the prediction of the confirmation time a hard task. In this paper we use probabilistic logic programming to model how fees influence the confirmation time and how much fees affect miner’s revenue.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alberti, M., Bellodi, E., Cota, G., Riguzzi, F., Zese, R.: cplint on SWISH: probabilistic logical inference with a web browser. Intell. Artif. 11(1), 47–64 (2017). https://doi.org/10.3233/IA-170105
Alberti, M., Cota, G., Riguzzi, F., Zese, R.: Probabilistic logical inference on the web. In: Adorni, G., Cagnoni, S., Gori, M., Maratea, M. (eds.) AI*IA 2016. LNCS (LNAI), vol. 10037, pp. 351–363. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49130-1_26
Azzolini, D., Riguzzi, F., Lamma, E., Bellodi, E., Zese, R.: Modeling bitcoin protocols with probabilistic logic programming. In: Bellodi, E., Schrijvers, T. (eds.) Proceedings of the 5th International Workshop on Probabilistic Logic Programming, PLP 2018, Co-located with the 28th International Conference on Inductive Logic Programming (ILP 2018), Ferrara, Italy, 1 September 2018, CEUR Workshop Proceedings, vol. 2219, pp. 49–61. CEUR-WS.org (2018). http://ceur-ws.org/Vol-2219/paper6.pdf
Basu, S., Easley, D., O’Hara, M., Sirer, E.G.: Towards a functional fee market for cryptocurrencies. CoRR abs/1901.06830 (2019). http://arxiv.org/abs/1901.06830
Bowden, R., Keeler, H.P., Krzesinski, A.E., Taylor, P.G.: Block arrivals in the bitcoin blockchain. CoRR abs/1801.07447 (2018). http://arxiv.org/abs/1801.07447
Bragaglia, S., Riguzzi, F.: Approximate inference for logic programs with annotated disjunctions. In: Frasconi, P., Lisi, F.A. (eds.) ILP 2010. LNCS (LNAI), vol. 6489, pp. 30–37. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21295-6_7
Buterin, V.: A next-generation smart contract and decentralized application platform (2014). https://github.com/ethereum/wiki/wiki/White-Paper. Accessed 14 Feb 2019
Cardano. https://whycardano.com/
Carlsten, M., Kalodner, H., Weinberg, S.M., Narayanan, A.: On the instability of bitcoin without the block reward. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 154–167. ACM (2016)
De Raedt, L., Kimmig, A.: Probabilistic (logic) programming concepts. Mach. Learn. 100(1), 5–47 (2015)
Eosio - an introduction by ian grigg. https://eos.io/introduction
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning, vol. 1. MIT Press, Cambridge (2016)
Haber, S., Stornetta, W.S.: How to time-stamp a digital document. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 437–455. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-38424-3_32
Hyperledger. https://www.hyperledger.org/
Kasahara, S., Kawahara, J.: Priority mechanism of bitcoin and its effect on transaction-confirmation process. CoRR abs/1604.00103 (2016). http://arxiv.org/abs/1604.00103
Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. Adaptive Computation and Machine Learning. MIT Press, Cambridge (2009)
Koops, D.T.: Predicting the confirmation time of bitcoin transactions. CoRR abs/1809.10596 (2018). http://arxiv.org/abs/1809.10596
Kroll, J.A., Davey, I.C., Felten, E.W.: The economics of bitcoin mining, or bitcoin in the presence of adversaries. In: Proceedings of WEIS, vol. 2013, p. 11 (2013)
Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
Fadja, A.N., Riguzzi, F.: Probabilistic logic programming in action. In: Holzinger, A., Goebel, R., Ferri, M., Palade, V. (eds.) Towards Integrative Machine Learning and Knowledge Extraction. LNCS (LNAI), vol. 10344, pp. 89–116. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69775-8_5
Nitti, D.: Hybrid Probabilistic Logic Programming. Ph.D. thesis, KU Leuven (2106)
Pinzón, C., Rocha, C.: Double-spend attack models with time advantange for bitcoin. Electr. Notes Theor. Comput. Sci. 329, 79–103 (2016). https://doi.org/10.1016/j.entcs.2016.12.006
Poon, J., Dryja, T.: The bitcoin lightning network: Scalable off-chain instant payments (2016). https://lightning.network/lightning-network-paper.pdf
Riguzzi, F.: MCINTYRE: a Monte Carlo system for probabilistic logic programming. Fund. Inform. 124(4), 521–541 (2013). https://doi.org/10.3233/FI-2013-847
Riguzzi, F.: The distribution semantics for normal programs with function symbols. Int. J. Approx. Reason. 77, 1–19 (2016). https://doi.org/10.1016/j.ijar.2016.05.005
Riguzzi, F.: Foundations of Probabilistic Logic Programming. River Publishers, Gistrup (2018). http://www.riverpublishers.com/book_details.php?book_id=660
Riguzzi, F., Bellodi, E., Lamma, E., Zese, R., Cota, G.: Probabilistic logic programming on the web. Softw.-Pract. Exp. 46(10), 1381–1396 (2016). https://doi.org/10.1002/spe.2386
Riguzzi, F., Swift, T.: Tabling and answer subsumption for reasoning on logic programs with annotated disjunctions. In: ICLP TC 2010. LIPIcs, vol. 7, pp. 162–171. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2010). https://doi.org/10.4230/LIPIcs.ICLP.2010.162
Riguzzi, F., Swift, T.: The PITA system: tabling and answer subsumption for reasoning under uncertainty. Theor. Pract. Log. Prog. 11(4–5), 433–449 (2011). https://doi.org/10.1017/S147106841100010X
Rosenfeld, M.: Analysis of hashrate-based double spending. CoRR abs/1402.2009 (2014). http://arxiv.org/abs/1402.2009
Sato, T.: A statistical learning method for logic programs with distribution semantics. In: Sterling, L. (ed.) ICLP 1995, pp. 715–729. MIT Press (1995)
Swan, M.: Blockchain: Blueprint for a New Economy. O’Reilly Media Inc., Newton (2015)
Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic programs with annotated disjunctions. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 431–445. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27775-0_30
Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Proj. Yellow Pap. 151, 1–32 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Azzolini, D., Riguzzi, F., Lamma, E. (2019). Analyzing Transaction Fees with Probabilistic Logic Programming. In: Abramowicz, W., Corchuelo, R. (eds) Business Information Systems Workshops. BIS 2019. Lecture Notes in Business Information Processing, vol 373. Springer, Cham. https://doi.org/10.1007/978-3-030-36691-9_21
Download citation
DOI: https://doi.org/10.1007/978-3-030-36691-9_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-36690-2
Online ISBN: 978-3-030-36691-9
eBook Packages: Computer ScienceComputer Science (R0)