[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Gravity-Based Approach to Connect Food Retailers with Consumers for Traceback Models of Food-Borne Diseases

  • Conference paper
  • First Online:
Complex Networks and Their Applications VIII (COMPLEX NETWORKS 2019)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 882))

Included in the following conference series:

  • 2932 Accesses

Abstract

Computational traceback models are important tools for investigations of widespread food-borne disease outbreaks as they help to determine the causative outbreak location and food item. In an attempt to understand the entire food supply chain from farm to fork, however, these models have paid little attention to consumer behavior and mobility, instead making the simplifying assumption that consumers shop in their home location. This paper aims to fill this gap by modelling food-flows from supermarkets to consumers in a large-scale gravity model for Hesse, Germany. Modelling results show that on average, groceries are sourced from two to four postal zones with half of all goods originating from non-home postal zones. The results contribute to a better understanding of the last link in the food supply chain. In practice, this allows investigators to relate reported outbreak cases with sourcing zones and respective food-retailers. The inclusion of this information into existing models is expected to improve their performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. World Health Organization: Foodborne Disease Outbreaks: Guidelines for Investigation and Control. WHO Library Cataloguing-in-Publication Data. World Health Organization, Geneva (2008)

    Google Scholar 

  2. Tinga, C., Todd, E., Cassidy, M., Pollari, F., Marshall, B., Greig, J., et al.: Exploring historical Canadian foodborne outbreak data sets for human illness attribution. J. Food Prot. 72(9), 1963–1976 (2016)

    Google Scholar 

  3. Marvin, H.J.P., Janssen, E.M., Bouzembrak, Y., Hendriksen, P.J.M., Staats, M.: Big data in food safety: an overview. Crit. Rev. Food Sci. Nutr. 57(11), 2286–2295 (2017)

    Article  Google Scholar 

  4. Horn, A.L., Friedrich, H.: Locating the source of large-scale diffusion of foodborne contamination. J. R. Soc. Interface 16(151), 1–11 (2019)

    Article  Google Scholar 

  5. Manitz, J., Kneib, T., Schlather, M., Helbing, D., Brockmann, D.: Origin detection during food-borne disease outbreaks - a case study of the 2011 EHEC/HUS outbreak in Germany. PLoS Curr. (2014)

    Google Scholar 

  6. Norström, M., Kristoffersen, A.B., Görlach, F.S., Nygård, K., Hopp, P.: An adjusted likelihood ratio approach analysing distribution of food products to assist the investigation of foodborne outbreaks. PLoS ONE 10(8), 1–13 (2015)

    Article  Google Scholar 

  7. Kaufman, J., Lessler, J., Harry, A., Edlund, S., Hu, K., Douglas, J., et al.: A likelihood-based approach to identifying contaminated food products using sales data: performance and challenges. PLoS Comput. Biol. 10(7), 1–10 (2014)

    Article  Google Scholar 

  8. Infas: Mobilität in Deutschland - Ergebnisbericht (2017)

    Google Scholar 

  9. Veenstra, S.A., Thomas, T., Tutert, S.I.A.: Trip distribution for limited destinations: a case study for grocery shopping trips in the Netherlands. Transportation (Amst) 37(4), 663–676 (2010)

    Article  Google Scholar 

  10. Jonker, N.J., Venter, C.J.: Modeling trip-length distribution of shopping center trips from GPS data. J. Transp. Eng. Part A Syst. 145(1), 04018079 (2019)

    Article  Google Scholar 

  11. McFadden, D.: Disaggregate behavioral travel demand’s RUM side a 30-year retrospective (2000)

    Google Scholar 

  12. Suhara, Y., Bahrami, M., Bozkaya, B., Pentland, A.(S.), Suhara, Y., et al.: Validating gravity-based market share models using large-scale transactional data (2019)

    Google Scholar 

  13. Cascetta, E., Pagliara, F., Papola, A.: Alternative approaches to trip distribution modelling: a retrospective review and suggestions for combining different approaches. Pap. Reg. Sci. 86(4), 597–620 (2007)

    Article  Google Scholar 

  14. Drezner, T.: Derived attractiveness of shopping malls. IMA J. Manag. Math. 17, 349–358 (2006)

    Article  MathSciNet  Google Scholar 

  15. Hyman, G.M.: The calibration of trip distribution models. Environ. Plan. 1, 105–112 (1969)

    Article  Google Scholar 

  16. Furness, K.P.: Time function iteration. Traffic Eng. Control 77, 458–460 (1965)

    Google Scholar 

  17. Suel, E., Polak, J.W.: Development of joint models for channel, store, and travel mode choice: grocery shopping in London. Transp. Res. Part A Policy Pract. 99, 147–162 (2017)

    Article  Google Scholar 

  18. Viegas, J.M., Martinez, L.M., Silva, E.A.: Effects of the modifiable areal unit problem on the delineation of traffic analysis zones. Environ. Plan. B Plan. Des. 36(4), 625–643 (2009)

    Article  Google Scholar 

  19. de Dios Ortúzar, D., Willumsen, L.G.: Modelling Transport. Wiley, Chichester (2011)

    Book  Google Scholar 

  20. Martin, W., McGuckin, N.: Report 365: Travel Estimation Techniques for Urban Planning. Washington, DC (1998)

    Google Scholar 

  21. Huff, D.: Calibrating the huff model using ArcGIS business analyst (2008)

    Google Scholar 

  22. Open Street Map: OpenStreetMap Deutschland: Die freie Wiki-Weltkarte (2019). https://www.openstreetmap.de/

  23. Statistische Ämter des Bundes und der Länder: ZENSUS2011 - Homepage (2018). https://www.zensus2011.de/EN/Home/home_node.html;jsessionid=8A55DF20B6CB474A1DB6DEFDD94B4949.1_cid389

  24. Khatib, Z., Ou, Y., Chang, K.: Session #10 GIS and Transportation Planning (1999)

    Google Scholar 

  25. Kordi, M., Kaiser, C., Fotheringham, A.S.: A possible solution for the centroid-to-centroid and intra-zonal trip length problems. In: Gense, J., Josselin, D., Vandenbroucke, D. (es.) Multidisciplinary Research on Geographical Information in Europe and Beyond, Avignon, pp. 147–152 (2012)

    Google Scholar 

  26. Bhatta, B.P., Larsen, O.I.: Are intrazonal trips ignorable? Transp. Policy 18, 13–22 (2010)

    Article  Google Scholar 

  27. Manout, O., Bonnel, P.: The impact of ignoring intrazonal trips in assignment models: a stochastic approach. Transportation (Amst), 1–21 (2018)

    Google Scholar 

  28. CZuber, E.: Geometrische Wahrscheinlichkeiten und Mittelwerte. T.B. Teubner, Leipzig (1884)

    Google Scholar 

  29. Larson, R., Odoni, A.: Urban Operations Research. Prentice Hall, New Jersey (1981)

    Google Scholar 

  30. Lebensmittel Zeitung: Ranking: Top 30 Lebensmittelhandel Deutschland 2018 (2018). https://www.lebensmittelzeitung.net/handel/Ranking-Top-30-Lebensmittelhandel-Deutschland-2018-134606

  31. Edeka: Edeka Einzelhandel (2019)

    Google Scholar 

  32. Infas: Mobilität in Deutschland - Wissenschaftlicher Hintergrund (2019). http://www.mobilitaet-in-deutschland.de/

  33. Mekky, A.: A direct method for speeding up the convergence of the furness biproportional method. Transp. Res. Part B 17B(1), 1–11 (1983)

    Article  MathSciNet  Google Scholar 

  34. Cesario, F.J.: Parameter estimation in spatial interaction modeling. Environ. Plan. A Econ. Sp. 5(4), 503–518 (1973)

    Article  Google Scholar 

Download references

Acknowledgement

The project this report is based on was supported with funds from the German Federal Ministry for Education and Research (BMBF) in the context of the call “Civil Security - Critical structures and processes in production and logistics” under project number 13N15072.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Schlaich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schlaich, T., Friedrich, H., Horn, A. (2020). A Gravity-Based Approach to Connect Food Retailers with Consumers for Traceback Models of Food-Borne Diseases. In: Cherifi, H., Gaito, S., Mendes, J., Moro, E., Rocha, L. (eds) Complex Networks and Their Applications VIII. COMPLEX NETWORKS 2019. Studies in Computational Intelligence, vol 882. Springer, Cham. https://doi.org/10.1007/978-3-030-36683-4_30

Download citation

Publish with us

Policies and ethics