Abstract
Computational traceback models are important tools for investigations of widespread food-borne disease outbreaks as they help to determine the causative outbreak location and food item. In an attempt to understand the entire food supply chain from farm to fork, however, these models have paid little attention to consumer behavior and mobility, instead making the simplifying assumption that consumers shop in their home location. This paper aims to fill this gap by modelling food-flows from supermarkets to consumers in a large-scale gravity model for Hesse, Germany. Modelling results show that on average, groceries are sourced from two to four postal zones with half of all goods originating from non-home postal zones. The results contribute to a better understanding of the last link in the food supply chain. In practice, this allows investigators to relate reported outbreak cases with sourcing zones and respective food-retailers. The inclusion of this information into existing models is expected to improve their performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
World Health Organization: Foodborne Disease Outbreaks: Guidelines for Investigation and Control. WHO Library Cataloguing-in-Publication Data. World Health Organization, Geneva (2008)
Tinga, C., Todd, E., Cassidy, M., Pollari, F., Marshall, B., Greig, J., et al.: Exploring historical Canadian foodborne outbreak data sets for human illness attribution. J. Food Prot. 72(9), 1963–1976 (2016)
Marvin, H.J.P., Janssen, E.M., Bouzembrak, Y., Hendriksen, P.J.M., Staats, M.: Big data in food safety: an overview. Crit. Rev. Food Sci. Nutr. 57(11), 2286–2295 (2017)
Horn, A.L., Friedrich, H.: Locating the source of large-scale diffusion of foodborne contamination. J. R. Soc. Interface 16(151), 1–11 (2019)
Manitz, J., Kneib, T., Schlather, M., Helbing, D., Brockmann, D.: Origin detection during food-borne disease outbreaks - a case study of the 2011 EHEC/HUS outbreak in Germany. PLoS Curr. (2014)
Norström, M., Kristoffersen, A.B., Görlach, F.S., Nygård, K., Hopp, P.: An adjusted likelihood ratio approach analysing distribution of food products to assist the investigation of foodborne outbreaks. PLoS ONE 10(8), 1–13 (2015)
Kaufman, J., Lessler, J., Harry, A., Edlund, S., Hu, K., Douglas, J., et al.: A likelihood-based approach to identifying contaminated food products using sales data: performance and challenges. PLoS Comput. Biol. 10(7), 1–10 (2014)
Infas: Mobilität in Deutschland - Ergebnisbericht (2017)
Veenstra, S.A., Thomas, T., Tutert, S.I.A.: Trip distribution for limited destinations: a case study for grocery shopping trips in the Netherlands. Transportation (Amst) 37(4), 663–676 (2010)
Jonker, N.J., Venter, C.J.: Modeling trip-length distribution of shopping center trips from GPS data. J. Transp. Eng. Part A Syst. 145(1), 04018079 (2019)
McFadden, D.: Disaggregate behavioral travel demand’s RUM side a 30-year retrospective (2000)
Suhara, Y., Bahrami, M., Bozkaya, B., Pentland, A.(S.), Suhara, Y., et al.: Validating gravity-based market share models using large-scale transactional data (2019)
Cascetta, E., Pagliara, F., Papola, A.: Alternative approaches to trip distribution modelling: a retrospective review and suggestions for combining different approaches. Pap. Reg. Sci. 86(4), 597–620 (2007)
Drezner, T.: Derived attractiveness of shopping malls. IMA J. Manag. Math. 17, 349–358 (2006)
Hyman, G.M.: The calibration of trip distribution models. Environ. Plan. 1, 105–112 (1969)
Furness, K.P.: Time function iteration. Traffic Eng. Control 77, 458–460 (1965)
Suel, E., Polak, J.W.: Development of joint models for channel, store, and travel mode choice: grocery shopping in London. Transp. Res. Part A Policy Pract. 99, 147–162 (2017)
Viegas, J.M., Martinez, L.M., Silva, E.A.: Effects of the modifiable areal unit problem on the delineation of traffic analysis zones. Environ. Plan. B Plan. Des. 36(4), 625–643 (2009)
de Dios Ortúzar, D., Willumsen, L.G.: Modelling Transport. Wiley, Chichester (2011)
Martin, W., McGuckin, N.: Report 365: Travel Estimation Techniques for Urban Planning. Washington, DC (1998)
Huff, D.: Calibrating the huff model using ArcGIS business analyst (2008)
Open Street Map: OpenStreetMap Deutschland: Die freie Wiki-Weltkarte (2019). https://www.openstreetmap.de/
Statistische Ämter des Bundes und der Länder: ZENSUS2011 - Homepage (2018). https://www.zensus2011.de/EN/Home/home_node.html;jsessionid=8A55DF20B6CB474A1DB6DEFDD94B4949.1_cid389
Khatib, Z., Ou, Y., Chang, K.: Session #10 GIS and Transportation Planning (1999)
Kordi, M., Kaiser, C., Fotheringham, A.S.: A possible solution for the centroid-to-centroid and intra-zonal trip length problems. In: Gense, J., Josselin, D., Vandenbroucke, D. (es.) Multidisciplinary Research on Geographical Information in Europe and Beyond, Avignon, pp. 147–152 (2012)
Bhatta, B.P., Larsen, O.I.: Are intrazonal trips ignorable? Transp. Policy 18, 13–22 (2010)
Manout, O., Bonnel, P.: The impact of ignoring intrazonal trips in assignment models: a stochastic approach. Transportation (Amst), 1–21 (2018)
CZuber, E.: Geometrische Wahrscheinlichkeiten und Mittelwerte. T.B. Teubner, Leipzig (1884)
Larson, R., Odoni, A.: Urban Operations Research. Prentice Hall, New Jersey (1981)
Lebensmittel Zeitung: Ranking: Top 30 Lebensmittelhandel Deutschland 2018 (2018). https://www.lebensmittelzeitung.net/handel/Ranking-Top-30-Lebensmittelhandel-Deutschland-2018-134606
Edeka: Edeka Einzelhandel (2019)
Infas: Mobilität in Deutschland - Wissenschaftlicher Hintergrund (2019). http://www.mobilitaet-in-deutschland.de/
Mekky, A.: A direct method for speeding up the convergence of the furness biproportional method. Transp. Res. Part B 17B(1), 1–11 (1983)
Cesario, F.J.: Parameter estimation in spatial interaction modeling. Environ. Plan. A Econ. Sp. 5(4), 503–518 (1973)
Acknowledgement
The project this report is based on was supported with funds from the German Federal Ministry for Education and Research (BMBF) in the context of the call “Civil Security - Critical structures and processes in production and logistics” under project number 13N15072.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Schlaich, T., Friedrich, H., Horn, A. (2020). A Gravity-Based Approach to Connect Food Retailers with Consumers for Traceback Models of Food-Borne Diseases. In: Cherifi, H., Gaito, S., Mendes, J., Moro, E., Rocha, L. (eds) Complex Networks and Their Applications VIII. COMPLEX NETWORKS 2019. Studies in Computational Intelligence, vol 882. Springer, Cham. https://doi.org/10.1007/978-3-030-36683-4_30
Download citation
DOI: https://doi.org/10.1007/978-3-030-36683-4_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-36682-7
Online ISBN: 978-3-030-36683-4
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)