[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Highly Parallel Approach for Solving Computationally Expensive Multicriteria Optimization Problems

  • Conference paper
  • First Online:
Supercomputing (RuSCDays 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1129))

Included in the following conference series:

  • 983 Accesses

Abstract

In this paper, a highly parallel approach for solving multicriteria optimization problems is proposed. The considered approach is based on the reduction of the multicriterial problems to the global optimization ones using the minimax convolution of the partial criteria, the dimensionality reduction with the use of the Peano space-filling curves, and the application of the efficient parallel information-statistical global optimization methods. The required computations can be time-consuming since functions representing individual criteria can be multiextremal and computationally expensive. The proposed approach comprises two different schemes for efficient parallel computations on high performance systems with shared and distributed memory and with a large number of computational units. The computational efficiency is achieved by storing all the computed criteria values and their intensive reuse for finding new solutions. The results of numerical experiments have demonstrated that this approach allows to reduce the computational costs of solving multicriteria optimization problems by a factor between 10 and 100.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    More precisely, the minimization of \(F(\lambda ,y)\) can lead to the obtaining of the weakly-efficient variants (the set of the weakly-efficient decisions includes the Pareto domain).

  2. 2.

    The lower indices denote the increasing order of the coordinate values of the points \(x_i\), \(1 \le i \le k\).

  3. 3.

    MGA is the sequential implementation of the parallel MPMGA method.

  4. 4.

    Due to the initial assumption that the computational complexity of multicriteria optimization problems is determined by the complexity of calculations of the criteria values, the speedup is defined as the reduction of the number of executed iterations.

References

  1. Miettinen, K.: Nonlinear Multiobjective Optimization. Springer, New York (1999). https://doi.org/10.1007/978-1-4615-5563-6

    Book  Google Scholar 

  2. Ehrgott, M.: Multicriteria Optimization, 2nd edn. Springer, Heidelberg (2010). https://doi.org/10.1007/3-540-27659-9

    Book  MATH  Google Scholar 

  3. Collette, Y., Siarry, P.: Multiobjective Optimization: Principles and Case Studies (Decision Engineering). Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-662-08883-8

    Book  MATH  Google Scholar 

  4. Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering. Struct. Multidisciplinary Optim. 26, 369–395 (2004)

    Article  MathSciNet  Google Scholar 

  5. Figueira, J., Greco, S., Ehrgott, M. (eds.): Multiple Criteria Decision Analysis: State of the Art Surveys. Springer, New York (2005). https://doi.org/10.1007/b100605

    Book  Google Scholar 

  6. Eichfelder, G.: Scalarizations for adaptively solving multi-objective optimization problems. Comput. Optim. Appl. 44, 249–273 (2009)

    Article  MathSciNet  Google Scholar 

  7. Strongin, R., Sergeyev, Ya.: Global Optimization with Non-Convex Constraints. Sequential and Parallel Algorithms. Kluwer Academic Publishers, Dordrecht (2000). (2nd ed. 2013, 3rd ed. 2014)

    Chapter  Google Scholar 

  8. Sergeyev, Y.D., Strongin, R.G., Lera, D.: Introduction to Global Optimization Exploiting Space-Filling Curves. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-8042-6

    Book  Google Scholar 

  9. Floudas, C.A., Pardalos, M.P.: Recent Advances in Global Optimization. Princeton University Press, Princeton (2016)

    Google Scholar 

  10. Locatelli, M., Schoen, F.: Global optimization: theory, algorithms, and applications. In: SIAM (2013)

    Google Scholar 

  11. Sergeyev, Y.D., Grishagin, V.A.: Parallel asynchronous global search and the nested optimization scheme. J. Comput. Anal. Appl. 3(2), 123–145 (2001)

    MathSciNet  MATH  Google Scholar 

  12. Marler, R.T., Arora, J.S.: Multi-Objective Optimization: Concepts and Methods for Engineering. VDM Verlag, Saarbrücken (2009)

    Google Scholar 

  13. Hillermeier, C., Jahn, J.: Multiobjective optimization: survey of methods and industrial applications. Surv. Math. Ind. 11, 1–42 (2005)

    MATH  Google Scholar 

  14. Gergel, V., Sidorov, S.: A two-level parallel global search algorithm for solution of computationally intensive multiextremal optimization problems. In: Malyshkin, V. (ed.) PaCT 2015. LNCS, vol. 9251, pp. 505–515. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21909-7_49

    Chapter  Google Scholar 

  15. Barkalov, K., Gergel, V., Lebedev, I.: Solving global optimization problems on GPU cluster. In: AIP Conference Proceedings, vol. 1738, p. 400006 (2016) https://doi.org/10.1063/1.4952194

  16. Gergel, V., Kozinov, E.: Efficient multicriteria optimization based on intensive reuse of search information. J. Glob. Optim. 71(1), 73–90 (2018)

    Article  Google Scholar 

  17. Evtushenko, Y.G., Posypkin, M.A.: A deterministic algorithm for global multi-objective optimization. Optim. Meth. Softw. 29(5), 1005–1019 (2014)

    Article  MathSciNet  Google Scholar 

  18. Žilinskas, A., Žilinskas, J.: Adaptation of a one-step worst-case optimal univariate algorithm of bi-objective lipschitz optimization to multidimensional problems. Commun. Nonlinear Sci. Numer. Simul. 21, 89–98 (2015)

    Article  MathSciNet  Google Scholar 

  19. Pardalos, P.M., Žilinskas, A., Žilinskas, J.: Non-Convex Multi-Objective Optimization. Springer, Heidelberg (2017)

    Book  Google Scholar 

  20. Gergel, V., Kozinov, E.: Accelerating parallel multicriterial optimization methods based on intensive using of search information. Procedia Comput. Sci. 108, 1463–1472 (2017)

    Article  Google Scholar 

  21. Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA—a platform and programming language independent interface for search algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb, K. (eds.) EMO 2003. LNCS, vol. 2632, pp. 494–508. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36970-8_35

    Chapter  Google Scholar 

  22. Chiandussi, G., Codegone, M., Ferrero, S., Varesio, F.E.: Comparison of multi-objective optimization methodologies for engineering applications. Comput. Math. Appl. 63(5), 912–942 (2012)

    Article  MathSciNet  Google Scholar 

  23. Gaviano, M., Kvasov, D.E., Lera, D., Sergeyev, Ya.D.: Software for generation of classes of test functions with known local and global minima for global optimization. ACM Trans. Math. Softw. 29(4), 469–480 (2003)

    Article  MathSciNet  Google Scholar 

  24. Borisenko, A., Gorlatch, S.: Parallelizing metaheuristics for optimal design of multiproduct batch plants on GPU. In: Malyshkin, V. (ed.) PaCT 2017. LNCS, vol. 10421, pp. 405–417. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62932-2_39

    Chapter  Google Scholar 

  25. Gergel, V.P., Strongin, R.G.: Parallel computing for globally optimal decision making. In: Malyshkin, V.E. (ed.) PaCT 2003. LNCS, vol. 2763, pp. 76–88. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45145-7_7

    Chapter  Google Scholar 

  26. Sakharov, M.K., Karpenko, A.P.: Adaptive load balancing in the modified mind evolutionary computation algorithm. Supercomput. Front. Innov. 5(4), 5–14 (2018)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by Russian Science Foundation, project No 16-11-10150 “Novel efficient methods and software tools for time-consuming decision making problems using superior-performance supercomputers.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Gergel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gergel, V., Kozinov, E. (2019). A Highly Parallel Approach for Solving Computationally Expensive Multicriteria Optimization Problems. In: Voevodin, V., Sobolev, S. (eds) Supercomputing. RuSCDays 2019. Communications in Computer and Information Science, vol 1129. Springer, Cham. https://doi.org/10.1007/978-3-030-36592-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36592-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36591-2

  • Online ISBN: 978-3-030-36592-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics