[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Balanced Connected Subgraph Problem in Geometric Intersection Graphs

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11949))

Abstract

We study the  (shortly, ) problem on geometric intersection graphs such as interval, circular-arc, permutation, unit-disk, outer-string graphs, etc. Given a graph \(G=(V,E)\), where each vertex in V is colored with either “ ” or “ ”, the BCS problem seeks a maximum cardinality induced connected subgraph H of G such that H is , i.e., H contains an equal number of red and blue vertices. We study the computational complexity landscape of the BCS problem while considering geometric intersection graphs. On one hand, we prove that the BCS problem is NP-hard on the unit disk, outer-string, complete grid, and unit square graphs. On the other hand, we design polynomial-time algorithms for the BCS problem on interval, circular-arc and permutation graphs. In particular, we give algorithms for the problem on both interval and circular-arc graphs, and those algorithms are used as subroutines for solving the BCS problem on the same classes of graphs. Finally, we present a FPT algorithm for the BCS problem on general graphs.

S. Bhore—The author is supported by the Austrian Science Fund (FWF) grant P 31119.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Some results are described in the full version, because of page limitations here.

References

  1. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)

    Article  MathSciNet  Google Scholar 

  2. Bhore, S., Chakraborty, S., Jana, S., Mitchell, J.S.B., Pandit, S., Roy, S.: The balanced connected subgraph problem. In: Pal, S.P., Vijayakumar, A. (eds.) CALDAM 2019. LNCS, vol. 11394, pp. 201–215. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11509-8_17

    Chapter  Google Scholar 

  3. Bodlaender, H.L., Fellows, M.R., Langston, M.A., Ragan, M.A., Rosamond, F.A., Weyer, M.: Quadratic kernelization for convex recoloring of trees. In: Lin, G. (ed.) COCOON 2007. LNCS, vol. 4598, pp. 86–96. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73545-8_11

    Chapter  Google Scholar 

  4. Bodlaender, H.L., Fellows, M.R., Warnow, T.J.: Two strikes against perfect phylogeny. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 273–283. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55719-9_80

    Chapter  Google Scholar 

  5. Bodlaender, H.L., de Fluiter, B.: Intervalizing k-colored graphs. In: Fülöp, Z., Gécseg, F. (eds.) ICALP 1995. LNCS, vol. 944, pp. 87–98. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60084-1_65

    Chapter  Google Scholar 

  6. Bonnet, É., Sikora, F.: The graph motif problem parameterized by the structure of the input graph. Discret. Appl. Math. 231, 78–94 (2017)

    Article  MathSciNet  Google Scholar 

  7. Fellows, M.R., Fertin, G., Hermelin, D., Vialette, S.: Upper and lower bounds for finding connected motifs in vertex-colored graphs. J. Comput. Syst. Sci. 77(4), 799–811 (2011)

    Article  MathSciNet  Google Scholar 

  8. Fellows, M.R., Hallett, M.T., Wareham, H.T.: DNA physical mapping: three ways difficult. In: Lengauer, T. (ed.) ESA 1993. LNCS, vol. 726, pp. 157–168. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57273-2_52

    Chapter  Google Scholar 

  9. Garey, M.R., Johnson, D.S.: The rectilinear steiner tree problem is NP-complete. SIAM J. Appl. Math. 32(4), 826–834 (1977)

    Article  MathSciNet  Google Scholar 

  10. Kikuno, T., Yoshida, N., Kakuda, Y.: The NP-completeness of the dominating set problem in cubic planer graphs. IEICI Trans. (1976–1990) 63(6), 443–444 (1980)

    Google Scholar 

  11. Lacroix, V., Fernandes, C.G., Sagot, M.: Motif search in graphs: application to metabolic networks. IEEE/ACM Trans. Comput. Biol. Bioinf. 3(4), 360–368 (2006)

    Article  Google Scholar 

  12. Lacroix, V., Fernandes, C.G., Sagot, M.F.: Motif search in graphs: application to metabolic networks. IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB) 3(4), 360–368 (2006)

    Article  Google Scholar 

Download references

Acknowledgement

We thank Joseph S. B. Mitchell for his useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Satyabrata Jana or Supantha Pandit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhore, S., Jana, S., Pandit, S., Roy, S. (2019). Balanced Connected Subgraph Problem in Geometric Intersection Graphs. In: Li, Y., Cardei, M., Huang, Y. (eds) Combinatorial Optimization and Applications. COCOA 2019. Lecture Notes in Computer Science(), vol 11949. Springer, Cham. https://doi.org/10.1007/978-3-030-36412-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36412-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36411-3

  • Online ISBN: 978-3-030-36412-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics