Abstract
We present new complexity results for the Balanced Connected Subgraph (BCS) problem. Given a graph whose vertices are colored either blue or red, find the largest connected subgraph containing as many red vertices as blue vertices. We establish the NP-completeness of the decision variant of this problem in bounded-diameter and bounded-degree graphs: bipartite graphs of diameter four, graphs of diameter three and bipartite cubic graphs. BCS being polynomially solvable in graphs of diameter two and maximum degree two, our results close some of the existing gaps in the complexity landscape.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Álvarez-Miranda, E., Ljubić, I., Mutzel, P.: The maximum weight connected subgraph problem. In: Jünger, M., Reinelt, G. (eds.) Facets of Combinatorial Optimization, pp. 245–270. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38189-8_11
Apollonio, N., Becker, R., Lari, I., Ricca, F., Simeone, B.: Bicolored graph partitioning, or: gerrymandering at its worst. Discrete Appl. Math. 157(17), 3601–3614 (2009)
Bhore, S., Chakraborty, S., Jana, S., Mitchell, J.S.B., Pandit, S., Roy, S.: The balanced connected subgraph problem. In: Pal, S.P., Vijayakumar, A. (eds.) CALDAM 2019. LNCS, vol. 11394, pp. 201–215. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11509-8_17
Dondi, R., Fertin, G., Vialette, S.: Maximum motif problem in vertex-colored graphs. In: Kucherov, G., Ukkonen, E. (eds.) CPM 2009. LNCS, vol. 5577, pp. 221–235. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02441-2_20
Fellows, M.R., Fertin, G., Hermelin, D., Vialette, S.: Sharp tractability borderlines for finding connected motifs in vertex-colored graphs. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 340–351. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73420-8_31
Fellows, M.R., Fertin, G., Hermelin, D., Vialette, S.: Upper and lower bounds for finding connected motifs in vertex-colored graphs. J. Comput. Syst. Sci. 77(4), 799–811 (2011)
Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1990)
Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoret. Comput. Sci. 38, 293–306 (1985)
Johnson, D.S.: The np-completeness column: an ongoing guide. J. Algorithms 6(1), 145–159 (1985)
Karp, R.M.: Reducibility among combinatorial problems. In: Proceedings of a Symposium on the Complexity of Computer Computations, IBM Thomas J. Watson Research Center, pp. 85–103 (1972)
Lacroix, V., Fernandes, C.G., Sagot, M.F.: Motif search in graphs: application to metabolic networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 3(4), 360–368 (2006)
Lokshtanov, D., Misra, N., Philip, G., Ramanujan, M.S., Saurabh, S.: Hardness of r-dominating set on graphs of diameter (r+1). In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 255–267. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03898-8_22
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Darties, B., Giroudeau, R., Jean-Claude, K., Pollet, V. (2019). The Balanced Connected Subgraph Problem: Complexity Results in Bounded-Degree and Bounded-Diameter Graphs. In: Li, Y., Cardei, M., Huang, Y. (eds) Combinatorial Optimization and Applications. COCOA 2019. Lecture Notes in Computer Science(), vol 11949. Springer, Cham. https://doi.org/10.1007/978-3-030-36412-0_36
Download citation
DOI: https://doi.org/10.1007/978-3-030-36412-0_36
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-36411-3
Online ISBN: 978-3-030-36412-0
eBook Packages: Computer ScienceComputer Science (R0)