[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

The Balanced Connected Subgraph Problem: Complexity Results in Bounded-Degree and Bounded-Diameter Graphs

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11949))

Abstract

We present new complexity results for the Balanced Connected Subgraph (BCS) problem. Given a graph whose vertices are colored either blue or red, find the largest connected subgraph containing as many red vertices as blue vertices. We establish the NP-completeness of the decision variant of this problem in bounded-diameter and bounded-degree graphs: bipartite graphs of diameter four, graphs of diameter three and bipartite cubic graphs. BCS being polynomially solvable in graphs of diameter two and maximum degree two, our results close some of the existing gaps in the complexity landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Álvarez-Miranda, E., Ljubić, I., Mutzel, P.: The maximum weight connected subgraph problem. In: Jünger, M., Reinelt, G. (eds.) Facets of Combinatorial Optimization, pp. 245–270. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38189-8_11

    Chapter  Google Scholar 

  2. Apollonio, N., Becker, R., Lari, I., Ricca, F., Simeone, B.: Bicolored graph partitioning, or: gerrymandering at its worst. Discrete Appl. Math. 157(17), 3601–3614 (2009)

    Article  MathSciNet  Google Scholar 

  3. Bhore, S., Chakraborty, S., Jana, S., Mitchell, J.S.B., Pandit, S., Roy, S.: The balanced connected subgraph problem. In: Pal, S.P., Vijayakumar, A. (eds.) CALDAM 2019. LNCS, vol. 11394, pp. 201–215. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11509-8_17

    Chapter  Google Scholar 

  4. Dondi, R., Fertin, G., Vialette, S.: Maximum motif problem in vertex-colored graphs. In: Kucherov, G., Ukkonen, E. (eds.) CPM 2009. LNCS, vol. 5577, pp. 221–235. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02441-2_20

    Chapter  Google Scholar 

  5. Fellows, M.R., Fertin, G., Hermelin, D., Vialette, S.: Sharp tractability borderlines for finding connected motifs in vertex-colored graphs. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 340–351. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73420-8_31

    Chapter  Google Scholar 

  6. Fellows, M.R., Fertin, G., Hermelin, D., Vialette, S.: Upper and lower bounds for finding connected motifs in vertex-colored graphs. J. Comput. Syst. Sci. 77(4), 799–811 (2011)

    Article  MathSciNet  Google Scholar 

  7. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1990)

    Google Scholar 

  8. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoret. Comput. Sci. 38, 293–306 (1985)

    Article  MathSciNet  Google Scholar 

  9. Johnson, D.S.: The np-completeness column: an ongoing guide. J. Algorithms 6(1), 145–159 (1985)

    Article  MathSciNet  Google Scholar 

  10. Karp, R.M.: Reducibility among combinatorial problems. In: Proceedings of a Symposium on the Complexity of Computer Computations, IBM Thomas J. Watson Research Center, pp. 85–103 (1972)

    Google Scholar 

  11. Lacroix, V., Fernandes, C.G., Sagot, M.F.: Motif search in graphs: application to metabolic networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 3(4), 360–368 (2006)

    Article  Google Scholar 

  12. Lokshtanov, D., Misra, N., Philip, G., Ramanujan, M.S., Saurabh, S.: Hardness of r-dominating set on graphs of diameter (r+1). In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 255–267. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03898-8_22

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin Pollet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Darties, B., Giroudeau, R., Jean-Claude, K., Pollet, V. (2019). The Balanced Connected Subgraph Problem: Complexity Results in Bounded-Degree and Bounded-Diameter Graphs. In: Li, Y., Cardei, M., Huang, Y. (eds) Combinatorial Optimization and Applications. COCOA 2019. Lecture Notes in Computer Science(), vol 11949. Springer, Cham. https://doi.org/10.1007/978-3-030-36412-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36412-0_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36411-3

  • Online ISBN: 978-3-030-36412-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics