[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

On the Hardness of Some Geometric Optimization Problems with Rectangles

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11949))

  • 897 Accesses

Abstract

We study the Set Cover, Hitting Set, Piercing Set, Independent Set, Dominating Set problems, and discrete versions (Discrete Independent Set and Discrete Dominating Set) for geometric instances in the plane. We focus on certain restricted classes of geometric objects, including axis-parallel lines, strips, and rectangles. For rectangles, we consider the cases in which the rectangles are (i) anchored on a horizontal line, (ii) anchored on two lines (either two parallel lines or one vertical and one horizontal line), and (iii) stabbed by a horizontal line. Some versions of these problems have been studied previously; we focus here on the open cases, for which no complexity results were known.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmadinejad, A., Zarrabi-Zadeh, H.: Finding maximum disjoint set of boundary rectangles with application to PCB routing. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 36(3), 412–420 (2017)

    Google Scholar 

  2. Ahmadinejad, A., Assadi, S., Emamjomeh-Zadeh, E., Yazdanbod, S., Zarrabi-Zadeh, H.: On the rectangle escape problem. Theor. Comput. Sci. 689, 126–136 (2017)

    Article  MathSciNet  Google Scholar 

  3. Bandyapadhyay, S., Maheshwari, A., Mehrabi, S., Suri, S.: Approximating dominating set on intersection graphs of rectangles and L-frames. Comput. Geom. 82, 32–44 (2019)

    Article  MathSciNet  Google Scholar 

  4. Bertossi, A.A.: Dominating sets for split and bipartite graphs. Inf. Process. Lett. 19(1), 37–40 (1984)

    Article  MathSciNet  Google Scholar 

  5. Chan, T.M., Grant, E.: Exact algorithms and APX-hardness results for geometric packing and covering problems. Comput. Geom. 47(2, Part A), 112–124 (2014)

    Article  MathSciNet  Google Scholar 

  6. Chepoi, V., Felsner, S.: Approximating hitting sets of axis-parallel rectangles intersecting a monotone curve. Comput. Geom. 46(9), 1036–1041 (2013)

    Article  MathSciNet  Google Scholar 

  7. Correa, J., Feuilloley, L., Pérez-Lantero, P., Soto, J.A.: Independent and hitting sets of rectangles intersecting a diagonal line: algorithms and complexity. Discrete Comput. Geom. 53(2), 344–365 (2015)

    Article  MathSciNet  Google Scholar 

  8. Erlebach, T., van Leeuwen, E.J.: PTAS for weighted set cover on unit squares. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX/RANDOM -2010. LNCS, vol. 6302, pp. 166–177. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15369-3_13

    Chapter  Google Scholar 

  9. Fowler, R.J., Paterson, M.S., Tanimoto, S.L.: Optimal packing and covering in the plane are NP-complete. Inf. Process. Lett. 12(3), 133–137 (1981)

    Article  MathSciNet  Google Scholar 

  10. Hassin, R., Megiddo, N.: Approximation algorithms for hitting objects with straight lines. Discrete Appl. Math. 30(1), 29–42 (1991)

    Article  MathSciNet  Google Scholar 

  11. Katz, M.J., Mitchell, J.S.B., Nir, Y.: Orthogonal segment stabbing. Comput. Geom. Theor. Appl. 30(2), 197–205 (2005)

    Article  MathSciNet  Google Scholar 

  12. Keil, J.M., Mitchell, J.S., Pradhan, D., Vatshelle, M.: An algorithm for the maximum weight independent set problem on outerstring graphs. Comput. Geom. Theor. Appl. 60(C), 19–25 (2017)

    Article  MathSciNet  Google Scholar 

  13. Knuth, D.E., Raghunathan, A.: The problem of compatible representatives. SIAM J. Discrete Math. 5(3), 422–427 (1992)

    Article  MathSciNet  Google Scholar 

  14. Kong, H., Ma, Q., Yan, T., Wong, M.D.F.: An optimal algorithm for finding disjoint rectangles and its application to PCB routing. In: Design Automation Conference, pp. 212–217 (2010)

    Google Scholar 

  15. Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11(2), 329–343 (1982)

    Article  MathSciNet  Google Scholar 

  16. Madireddy, R.R., Mudgal, A., Pandit, S.: Hardness results and approximation schemes for discrete packing and domination problems. In: Kim, D., Uma, R.N., Zelikovsky, A. (eds.) COCOA 2018. LNCS, vol. 11346, pp. 421–435. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04651-4_28

    Chapter  MATH  Google Scholar 

  17. Mudgal, A., Pandit, S.: Covering, hitting, piercing and packing rectangles intersecting an inclined line. In: Lu, Z., Kim, D., Wu, W., Li, W., Du, D.-Z. (eds.) COCOA 2015. LNCS, vol. 9486, pp. 126–137. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26626-8_10

    Chapter  MATH  Google Scholar 

  18. Mudgal, A., Pandit, S.: Geometric hitting set, set cover and generalized class cover problems with half-strips in opposite directions. Discrete Appl. Math. 211, 143–162 (2016)

    Article  MathSciNet  Google Scholar 

  19. Pandit, S.: Dominating set of rectangles intersecting a straight line. In: CCCG, pp. 144–149 (2017)

    Google Scholar 

  20. Pandit, S.: Covering and packing of triangles intersecting a straight line. In: Pal, S.P., Vijayakumar, A. (eds.) CALDAM 2019. LNCS, vol. 11394, pp. 216–230. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11509-8_18

    Chapter  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Joseph S. B. Mitchell for fruitful discussions in the early stages of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supantha Pandit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pandit, S. (2019). On the Hardness of Some Geometric Optimization Problems with Rectangles. In: Li, Y., Cardei, M., Huang, Y. (eds) Combinatorial Optimization and Applications. COCOA 2019. Lecture Notes in Computer Science(), vol 11949. Springer, Cham. https://doi.org/10.1007/978-3-030-36412-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36412-0_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36411-3

  • Online ISBN: 978-3-030-36412-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics