Abstract
Ocean exploration and monitoring with autonomous platforms can provide researchers and decision makers with valuable data, trends and insights into the largest ecosystem on Earth. Regardless of the recognition of the importance of such platforms in this scenario, their design and development remains an open challenge. In particular, energy efficiency, control and robustness are major concerns with implications in terms of autonomy and sustainability. Wingsails allow autonomous boats to navigate with increased autonomy, due to lower power consumption, and greater robustness, due to simpler control. Within the scope of a project that addresses the design, development and deployment of a rigid wing autonomous sailboat to perform long term missions in the ocean, this paper summarises the general principles for airfoil selection and wingsail design in robotic sailing, and are given some insights on how these aspects influence the autonomous sailboat being developed by the authors.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Anderson, D.F., Eberhardt, S.: Understanding Flight. McGraw-Hill, New York (2010)
Atkins, D.W.: The CFD assisted design and experimental testing of a wingsail with high lift devices. Ph.D. thesis, University of Salford (1996)
DelMar Conde: DCmini (2019). https://www.delmarconde.pt/?page_id=19. Accessed 31 Jan 2019
Domínguez-Brito, A.C., Valle-Fernández, B., Cabrera-Gámez, J., de Miguel, A.R., García, J.C.: A-TIRMA G2: an oceanic autonomous sailboat. In: Robotic Sailing 2015 - Proceedings of the 8th International Robotic Sailing Conference, pp. 3–13, September 2015. https://doi.org/10.1007/978-3-319-23335-2_1
Elkaim, G.H.: System identification for precision control of a WingSailed GPS-guided catamaran. Ph.D. thesis, Stanford University (2001)
Elkaim, G.H., Boyce, C.L.: Experimental aerodynamic performance of a self-trimming wing-sail for autonomous surface vehicles. IFAC Proc. Vol. 40(17), 271–276 (2007). 7th IFAC Conference on Control Applications in Marine Systems. https://doi.org/10.3182/20070919-3-HR-3904.00048
Holzgrafe, J.: Transverse stability problems of small autonomous sailing vessels. In: Robotic Sailing 2013 - Proceedings of the 6th International Robotic Sailing Conference, pp. 111–123, September 2013. https://doi.org/10.1007/978-3-319-02276-5_9
INNOC - Österreichische Gesellschaft für innovative Computerwissenschaften: Robotic sailing (2018). https://www.roboticsailing.org/. Accessed 16 Nov 2018
Kimball, J.: Physics of Sailing. CRC Press - Taylor & Francis Group, Boca Raton (2010)
Leloup, R., Pivert, F.L., Thomas, S., Bouvart, G., Douale, N., Malet, H.D., Vienney, L., Gallou, Y., Roncin, K.: Breizh spirit, a reliable boat for crossing the atlantic ocean. In: Robotic Sailing - Proceedings of the 4th International Robotic Sailing Conference, pp. 55–69, August 2011. https://doi.org/10.1007/978-3-642-22836-0_4
Lyon, C.A., Broeren, A.P., Giguère, P., Gopalarathnam, A., Selig, M.S.: Summary of Low-Speed Airfoil Data - Volume 3. SoarTech Publications, Virginia Beach (1997). https://m-selig.ae.illinois.edu/uiuc_lsat/Low-Speed-Airfoil-Data-V3.pdf
Microtransat: The microtransat challenge. https://www.microtransat.org/index.php. Accessed 9 Nov 2018
Miller, P., Beeler, A., Cayaban, B., Dalton, M., Fach, C., Link, C., MacArthur, J., Urmenita, J., Medina, R.Y.: An easy-to-build, low-cost, high-performance sailbot. In: Robotic Sailing 2014 - Proceedings of the 7th International Robotic Sailing Conference, pp. 3–16, September 2014. https://doi.org/10.1007/978-3-319-10076-0_1
Miller, P.H., Hamlet, M., Rossman, J.: Continuous improvements to USNA SailBots for inshore racing and offshore voyaging. In: Robotic Sailing 2012 - Proceedings of the 5th International Robotic Sailing Conference, September 2012. https://doi.org/10.1007/978-3-642-33084-1_5
Neal, M., Sauzé, C., Thomas, B., Alves, J.C.: Technologies for autonomous sailing: wings and wind sensors. In: Proceedings of the 2nd International Robotic Sailing Conference, pp. 23–30, July 2009
Olson, S. (ed.): Autonomy on Land and Sea and in the Air and Space: Proceedings of a Forum. The National Academies Press, Washington, DC (2018). https://doi.org/10.17226/25168
SailBot: Sailbot—international robotic sailing regatta (2018). https://www.sailbot.org/. Accessed 16 Nov 2018
Sauzé, C., Neal, M.: An autonomous sailing robot for ocean observation. In: Proceedings of the 7th Towards Autonomous Robotic Systems (TAROS) Conference, pp. 190–197, September 2006
Sauzé, C., Neal, M.: Design considerations for sailing robots performing long term autonomous oceanography. In: Proceedings of the International Robotic Sailing Conference, pp. 21–29, May 2008
Sauzé, C., Neal, M.: MOOP: a miniature sailing robot platform. In: Robotic Sailing - Proceedings of the 4th International Robotic Sailing Conference, pp. 39–53, August 2011. https://doi.org/10.1007/978-3-642-22836-0_3
Schlaefer, A., Beckmann, D., Heinig, M., Bruder, R.: A new class for robotic sailing: the robotic racing micro magic. In: Robotic Sailing - Proceedings of the 4th International Robotic Sailing Conference, pp. 71–84, August 2011. https://doi.org/10.1007/978-3-642-22836-0_5
Selig, M.S., Donovan, J.F., Fraser, D.B.: Airfoils at Low Speeds. H.A. Stokely, Virginia Beach (1989). https://m-selig.ae.illinois.edu/uiuc_lsat/Airfoils-at-Low-Speeds.pdf
Selig, M.S., Guglielmo, J.J., Broeren, A.P., Giguère, P.: Summary of Low-Speed Airfoil Data - Volume 1. SoarTech Publications, Virginia Beach (1995). https://m-selig.ae.illinois.edu/uiuc_lsat/Low-Speed-Airfoil-Data-V1.pdf
Selig, M.S., Lyon, C.A., Giguère, P., Ninham, C.P., Guglielmo, J.J.: Summary of Low-Speed Airfoil Data - Volume 2. SoarTech Publications, Virginia Beach (1996). https://m-selig.ae.illinois.edu/uiuc_lsat/Low-Speed-Airfoil-Data-V2.pdf
Silva, M.F., Friebe, A., Malheiro, B., Guedes, P., Ferreira, P., Waller, M.: Rigid wing sailboats: a state of the art survey. Ocean Eng. 187, 106–150 (2019). http://www.sciencedirect.com/science/article/pii/S0029801819303294
Springer, P.J.: Outsourcing War to Machines - The Military Robotics Revolution. Praeger Security International, Santa Barbara (2018)
Stelzer, R.: Autonomous sailboat navigation - novel algorithms and experimental demonstration. Ph.D. thesis, De Montfort University (2012)
Tools, A.: Airfoil tools (2018). http://airfoiltools.com/. Accessed 4 Feb 2019
Tools, A.: Airfoil tools (2018). http://airfoiltools.com/airfoil/details?airfoil=e169-il#polars. Accessed 4 Feb 2019
Funding
This work was partially financed by National Funds through the Portuguese funding agency, Fundação para a Ciência e a Tecnologia (FCT), within project UID/EEA/50014/2019.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Silva, M.F., Malheiro, B., Guedes, P., Ferreira, P. (2020). Airfoil Selection and Wingsail Design for an Autonomous Sailboat. In: Silva, M., Luís Lima, J., Reis, L., Sanfeliu, A., Tardioli, D. (eds) Robot 2019: Fourth Iberian Robotics Conference. ROBOT 2019. Advances in Intelligent Systems and Computing, vol 1092. Springer, Cham. https://doi.org/10.1007/978-3-030-35990-4_25
Download citation
DOI: https://doi.org/10.1007/978-3-030-35990-4_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-35989-8
Online ISBN: 978-3-030-35990-4
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)