[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Airfoil Selection and Wingsail Design for an Autonomous Sailboat

  • Conference paper
  • First Online:
Robot 2019: Fourth Iberian Robotics Conference (ROBOT 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1092))

Included in the following conference series:

Abstract

Ocean exploration and monitoring with autonomous platforms can provide researchers and decision makers with valuable data, trends and insights into the largest ecosystem on Earth. Regardless of the recognition of the importance of such platforms in this scenario, their design and development remains an open challenge. In particular, energy efficiency, control and robustness are major concerns with implications in terms of autonomy and sustainability. Wingsails allow autonomous boats to navigate with increased autonomy, due to lower power consumption, and greater robustness, due to simpler control. Within the scope of a project that addresses the design, development and deployment of a rigid wing autonomous sailboat to perform long term missions in the ocean, this paper summarises the general principles for airfoil selection and wingsail design in robotic sailing, and are given some insights on how these aspects influence the autonomous sailboat being developed by the authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson, D.F., Eberhardt, S.: Understanding Flight. McGraw-Hill, New York (2010)

    Google Scholar 

  2. Atkins, D.W.: The CFD assisted design and experimental testing of a wingsail with high lift devices. Ph.D. thesis, University of Salford (1996)

    Google Scholar 

  3. DelMar Conde: DCmini (2019). https://www.delmarconde.pt/?page_id=19. Accessed 31 Jan 2019

  4. Domínguez-Brito, A.C., Valle-Fernández, B., Cabrera-Gámez, J., de Miguel, A.R., García, J.C.: A-TIRMA G2: an oceanic autonomous sailboat. In: Robotic Sailing 2015 - Proceedings of the 8th International Robotic Sailing Conference, pp. 3–13, September 2015. https://doi.org/10.1007/978-3-319-23335-2_1

    Google Scholar 

  5. Elkaim, G.H.: System identification for precision control of a WingSailed GPS-guided catamaran. Ph.D. thesis, Stanford University (2001)

    Google Scholar 

  6. Elkaim, G.H., Boyce, C.L.: Experimental aerodynamic performance of a self-trimming wing-sail for autonomous surface vehicles. IFAC Proc. Vol. 40(17), 271–276 (2007). 7th IFAC Conference on Control Applications in Marine Systems. https://doi.org/10.3182/20070919-3-HR-3904.00048

    Article  Google Scholar 

  7. Holzgrafe, J.: Transverse stability problems of small autonomous sailing vessels. In: Robotic Sailing 2013 - Proceedings of the 6th International Robotic Sailing Conference, pp. 111–123, September 2013. https://doi.org/10.1007/978-3-319-02276-5_9

    Chapter  Google Scholar 

  8. INNOC - Österreichische Gesellschaft für innovative Computerwissenschaften: Robotic sailing (2018). https://www.roboticsailing.org/. Accessed 16 Nov 2018

  9. Kimball, J.: Physics of Sailing. CRC Press - Taylor & Francis Group, Boca Raton (2010)

    Google Scholar 

  10. Leloup, R., Pivert, F.L., Thomas, S., Bouvart, G., Douale, N., Malet, H.D., Vienney, L., Gallou, Y., Roncin, K.: Breizh spirit, a reliable boat for crossing the atlantic ocean. In: Robotic Sailing - Proceedings of the 4th International Robotic Sailing Conference, pp. 55–69, August 2011. https://doi.org/10.1007/978-3-642-22836-0_4

    Chapter  Google Scholar 

  11. Lyon, C.A., Broeren, A.P., Giguère, P., Gopalarathnam, A., Selig, M.S.: Summary of Low-Speed Airfoil Data - Volume 3. SoarTech Publications, Virginia Beach (1997). https://m-selig.ae.illinois.edu/uiuc_lsat/Low-Speed-Airfoil-Data-V3.pdf

  12. Microtransat: The microtransat challenge. https://www.microtransat.org/index.php. Accessed 9 Nov 2018

  13. Miller, P., Beeler, A., Cayaban, B., Dalton, M., Fach, C., Link, C., MacArthur, J., Urmenita, J., Medina, R.Y.: An easy-to-build, low-cost, high-performance sailbot. In: Robotic Sailing 2014 - Proceedings of the 7th International Robotic Sailing Conference, pp. 3–16, September 2014. https://doi.org/10.1007/978-3-319-10076-0_1

    Google Scholar 

  14. Miller, P.H., Hamlet, M., Rossman, J.: Continuous improvements to USNA SailBots for inshore racing and offshore voyaging. In: Robotic Sailing 2012 - Proceedings of the 5th International Robotic Sailing Conference, September 2012. https://doi.org/10.1007/978-3-642-33084-1_5

    Chapter  Google Scholar 

  15. Neal, M., Sauzé, C., Thomas, B., Alves, J.C.: Technologies for autonomous sailing: wings and wind sensors. In: Proceedings of the 2nd International Robotic Sailing Conference, pp. 23–30, July 2009

    Google Scholar 

  16. Olson, S. (ed.): Autonomy on Land and Sea and in the Air and Space: Proceedings of a Forum. The National Academies Press, Washington, DC (2018). https://doi.org/10.17226/25168

    Google Scholar 

  17. SailBot: Sailbot—international robotic sailing regatta (2018). https://www.sailbot.org/. Accessed 16 Nov 2018

  18. Sauzé, C., Neal, M.: An autonomous sailing robot for ocean observation. In: Proceedings of the 7th Towards Autonomous Robotic Systems (TAROS) Conference, pp. 190–197, September 2006

    Google Scholar 

  19. Sauzé, C., Neal, M.: Design considerations for sailing robots performing long term autonomous oceanography. In: Proceedings of the International Robotic Sailing Conference, pp. 21–29, May 2008

    Google Scholar 

  20. Sauzé, C., Neal, M.: MOOP: a miniature sailing robot platform. In: Robotic Sailing - Proceedings of the 4th International Robotic Sailing Conference, pp. 39–53, August 2011. https://doi.org/10.1007/978-3-642-22836-0_3

    Chapter  Google Scholar 

  21. Schlaefer, A., Beckmann, D., Heinig, M., Bruder, R.: A new class for robotic sailing: the robotic racing micro magic. In: Robotic Sailing - Proceedings of the 4th International Robotic Sailing Conference, pp. 71–84, August 2011. https://doi.org/10.1007/978-3-642-22836-0_5

    Chapter  Google Scholar 

  22. Selig, M.S., Donovan, J.F., Fraser, D.B.: Airfoils at Low Speeds. H.A. Stokely, Virginia Beach (1989). https://m-selig.ae.illinois.edu/uiuc_lsat/Airfoils-at-Low-Speeds.pdf

  23. Selig, M.S., Guglielmo, J.J., Broeren, A.P., Giguère, P.: Summary of Low-Speed Airfoil Data - Volume 1. SoarTech Publications, Virginia Beach (1995). https://m-selig.ae.illinois.edu/uiuc_lsat/Low-Speed-Airfoil-Data-V1.pdf

  24. Selig, M.S., Lyon, C.A., Giguère, P., Ninham, C.P., Guglielmo, J.J.: Summary of Low-Speed Airfoil Data - Volume 2. SoarTech Publications, Virginia Beach (1996). https://m-selig.ae.illinois.edu/uiuc_lsat/Low-Speed-Airfoil-Data-V2.pdf

  25. Silva, M.F., Friebe, A., Malheiro, B., Guedes, P., Ferreira, P., Waller, M.: Rigid wing sailboats: a state of the art survey. Ocean Eng. 187, 106–150 (2019). http://www.sciencedirect.com/science/article/pii/S0029801819303294

    Article  Google Scholar 

  26. Springer, P.J.: Outsourcing War to Machines - The Military Robotics Revolution. Praeger Security International, Santa Barbara (2018)

    Google Scholar 

  27. Stelzer, R.: Autonomous sailboat navigation - novel algorithms and experimental demonstration. Ph.D. thesis, De Montfort University (2012)

    Google Scholar 

  28. Tools, A.: Airfoil tools (2018). http://airfoiltools.com/. Accessed 4 Feb 2019

  29. Tools, A.: Airfoil tools (2018). http://airfoiltools.com/airfoil/details?airfoil=e169-il#polars. Accessed 4 Feb 2019

Download references

Funding

This work was partially financed by National Funds through the Portuguese funding agency, Fundação para a Ciência e a Tecnologia (FCT), within project UID/EEA/50014/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel F. Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Silva, M.F., Malheiro, B., Guedes, P., Ferreira, P. (2020). Airfoil Selection and Wingsail Design for an Autonomous Sailboat. In: Silva, M., Luís Lima, J., Reis, L., Sanfeliu, A., Tardioli, D. (eds) Robot 2019: Fourth Iberian Robotics Conference. ROBOT 2019. Advances in Intelligent Systems and Computing, vol 1092. Springer, Cham. https://doi.org/10.1007/978-3-030-35990-4_25

Download citation

Publish with us

Policies and ethics