[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 862))

Abstract

Ontologies are computational artifacts to represent knowledge through classes and relations between them. Those knowledge bases require a lot human effort to be constructed due to the need of domain experts and knowledge engineers. Ontology Learning aims to automatically build ontologies from data that can be from multimedia, web pages, databases, unstructured text, etc. In this work, we propose a methodology to automatically build an ontology to represent concepts map of subjects to be used in academic context. The main contribution of this methodology is that does not require handcrafted features by using Deep Learning techniques to identify taxonomic and semantic relations between concepts of some specific domain. Also, due the implementation of transfer learning is not needed of specific domain dataset, the relation classification model is trained with Wikipedia and WordNet by distant supervision technique and the knowledge is transferred to a specific domain by word embedding techniques. The results of this approach are promising considering the lack of human intervention and feature engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 159.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 199.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 199.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://wordnet.princeton.edu/wordnet/.

  2. 2.

    https://www.wikipedia.org/.

References

  1. Atapattu, T., Falkner, K., Falkner, N.: Automated extraction of semantic concepts from semi-structured data: supporting computer-based education through the analysis of lecture notes. In: International Conference on Database and Expert Systems Applications, pp. 161–175 (2012)

    Google Scholar 

  2. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    MATH  Google Scholar 

  3. Caraballo, S.A.: Automatic construction of a hypernym-labeled noun hierarchy from text. In: Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics on Computational Linguistics, ACL’99, pp. 120–126. Association for Computational Linguistics, Stroudsburg, PA, USA (1999)

    Google Scholar 

  4. Chakraborty, S., Roy, D., Basu, A.: TMRF e-book development of knowledge based intelligent tutoring system. Sajja & Akerkar 1, 74–100 (2010)

    Google Scholar 

  5. Colace, F., De Santo, M., Greco, L., Amato, F., Moscato, V., Picariello, A.: Terminological ontology learning and population using latent Dirichlet allocation. J. Vis. Lang. Comput. 25(6), 818–826 (2014)

    Article  Google Scholar 

  6. Conde, A., Larrañaga, M., Calvo, I., Elorriaga, J., Arruarte, A.: Automatic generation of the domain module from electronic textbooks: method and validation. IEEE Trans. Knowl. Data Eng. 26(1), 69–82 (2014)

    Article  Google Scholar 

  7. dos Santos, C.N., Xiang, B., Zhou, B.: Classifying relations by ranking with convolutional neural networks. Acl-2015 3, 626–634 (2015)

    Google Scholar 

  8. Fan, M., Zhou, Q., Abel, A., Zheng, T.F., Grishman, R.: Probabilistic belief embedding for large-scale knowledge population. Cogn. Comput. 8(6), 1087–1102 (2016)

    Article  Google Scholar 

  9. Gantayat, N., Iyer, S.: Automated building of domain ontologies from lecture notes in courseware. In: Proceedings—IEEE International Conference on Technology for Education, T4E 2011, pp. 89–95 (2011)

    Google Scholar 

  10. Gligora, M., Jakupovic, A.: A prevalence trend of characteristics of intelligent and adaptive hypermedia e-learning systems (2015)

    Google Scholar 

  11. Hendrickx, I., Kim, S.N., Kozareva, Z., Nakov, P., Séaghdha, D., Padó, S., Pennacchiotti, M., Romano, L., Szpakowicz, S.: SemEval-2010 Task 8: multi-way classification of semantic relations between pairs of nominals. In: Computational Linguistics, Number June 2009 in DEW’09, pp. 94–99. Association for Computational Linguistics, Stroudsburg, PA, USA (2010)

    Google Scholar 

  12. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  13. Isir, R.M., Canada, G.H.: Using ontological engineering to overcome common AI-ED problems. J. Artif. Intell. Educ. 11, 107–121 (2000)

    Google Scholar 

  14. Kingma, D.P., Adam, J.B.: Method for stochastic optimization. CoRR (2014). abs/1412.6

    Google Scholar 

  15. Komninos, A.: Dependency based embeddings for sentence classification tasks. In: Naacl 2016, pp. 1490–1500 (2016)

    Google Scholar 

  16. Landauer, T.K., Dumais, S.T.: A solution to Plato’s problem: the latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychol. Rev. 104(2), 211–240 (1997)

    Article  Google Scholar 

  17. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning (2015)

    Article  Google Scholar 

  18. Lin, Y., Shen, S., Liu, Z., Luan, H., Sun, M.: Neural relation extraction with selective attention over instances. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, vol. 1: Long Papers, pp. 2124–2133 (2016)

    Google Scholar 

  19. Mikolov, T., Corrado, G., Chen, K., Dean, J.: Efficient estimation of word representations in vector space. In: Proceedings of the International Conference on Learning Representations (ICLR 2013), pp. 1–12 (2013)

    Google Scholar 

  20. Navarro-Almanza, R., Licea, G., Juárez-Ramírez, R., Mendoza, O.: Semantic Capture analysis in word embedding vectors using convolutional neural network. In: Rocha, A., Correia, A.M., Adeli, H., Reis, L.P., Costanzo, S. (eds.) Recent Advances in Information Systems and Technologies, vol. 1, pp. 106–114. Springer, Cham (2017)

    Chapter  Google Scholar 

  21. Pan, W., Zhong, F., Yang, Q.: Transfer learning for text mining. In: Aggarwal, C.C., Zhai, C. (eds.) Mining Text Data, pp. 223–257. Springer, Boston, MA, USA (2012)

    Chapter  Google Scholar 

  22. Qin, P., Weiran, X., Guo, J.: An empirical convolutional neural network approach for semantic relation classification. Neurocomputing 190, 1–9 (2016)

    Article  Google Scholar 

  23. Ramírez-Noriega, A., Juárez-Ramírez, R., Jiménez, S., Inzunza, S., Navarro, R., López-Martínez, J.: An ontology of the object orientation for intelligent tutoring systems. In: 2017 5th International Conference in Software Engineering Research and Innovation, pp. 163–170 (2017)

    Google Scholar 

  24. Rios-Alvarado, A.B., Lopez-Arevalo, I., Sosa-Sosa, V.J.: Learning concept hierarchies from textual resources for ontologies construction. Expert Syst. Appl. 40(15), 5907–5915 (2013)

    Article  Google Scholar 

  25. Xiong, S., Ji, D.: Exploiting flexible-constrained K-means clustering with word embedding for aspect-phrase grouping. Inf. Sci. 367–368, 689–699 (2016)

    Article  Google Scholar 

  26. Zeng, D., Liu, K., Chen, Y., Zhao, J.: Distant supervision for relation extraction via piecewise convolutional neural networks. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 1753–1762 (2015)

    Google Scholar 

  27. Zhao, H., Lu, Z., Poupart, P.: Self-adaptive hierarchical sentence model. In: IJCAI International Joint Conference on Artificial Intelligence, January 2015, pp. 4069–4076 (2015)

    Google Scholar 

  28. Zhou, P., Shi, W., Tian, J., Qi, Z., Li, B., Hao, H., Xu, B.: Attention-based bidirectional long short-term memory networks for relation classification. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, vol. 2, Short Papers, pp. 207–212 (2016)

    Google Scholar 

Download references

Acknowledgements

This research was supported/partially supported by MyDCI (Maestría y Doctorado en Ciencias e Ingeniería).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl Navarro-Almanza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Navarro-Almanza, R., Juárez-Ramírez, R., Licea, G., Castro, J.R. (2020). Automated Ontology Extraction from Unstructured Texts using Deep Learning. In: Castillo, O., Melin, P., Kacprzyk, J. (eds) Intuitionistic and Type-2 Fuzzy Logic Enhancements in Neural and Optimization Algorithms: Theory and Applications. Studies in Computational Intelligence, vol 862. Springer, Cham. https://doi.org/10.1007/978-3-030-35445-9_50

Download citation

Publish with us

Policies and ethics