Abstract
We show how to perform a full-threshold n-party actively secure MPC protocol over a subgroup of order p of an elliptic curve group E(K). This is done by utilizing a full-threshold n-party actively secure MPC protocol over \(\mathbb {F}_p\) in the pre-processing model (such as SPDZ), and then locally mapping the Beaver triples from this protocol into equivalent triples for the elliptic curve. This allows us to transform essentially any (algebraic) one-party protocol over an elliptic curve, into an n-party one. As an example we show how to transform a general \(\varSigma \)-protocol over elliptic curves and the shuffle protocol of Abe into an n-party protocol. This latter application requires us to also give an MPC protocol to derive the switches in a Waksman network from a generic permutation, which may be of independent interest.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abe, M.: Universally verifiable mix-net with verification work independent of the number of mix-servers. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 437–447. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054144
Abe, M.: Mix-networks on permutation networks. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 258–273. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-540-48000-6_21
Abe, M., Hoshino, F.: Remarks on mix-network based on permutation networks. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 317–324. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44586-2_23
Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 263–280. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_17
Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5_19
Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6_1
Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_38
Doerner, J., Kondi, Y., Lee, E., Shelat, A.: Secure two-party threshold ECDSA from ECDSA assumptions. In: 2018 IEEE Symposium on Security and Privacy, pp. 980–997. IEEE Computer Society Press, May 2018
Fauzi, P., Lipmaa, H., Siim, J., Zając, M.: An efficient pairing-based shuffle argument. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part II. LNCS, vol. 10625, pp. 97–127. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9_4
Fauzi, P., Lipmaa, H., Zając, M.: A shuffle argument secure in the generic model. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part II. LNCS, vol. 10032, pp. 841–872. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_28
González, A., Ráfols, C.: New techniques for non-interactive shuffle and range arguments. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 427–444. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39555-5_23
Keller, M., Scholl, P.: Efficient, oblivious data structures for MPC. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 506–525. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8_27
Laur, S., Willemson, J., Zhang, B.: Round-efficient oblivious database manipulation. In: Lai, X., Zhou, J., Li, H. (eds.) ISC 2011. LNCS, vol. 7001, pp. 262–277. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24861-0_18
Lindell, Y.: Fast secure two-party ECDSA signing. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 613–644. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0_21
Lindell, Y., Nof, A.: Fast secure multiparty ECDSA with practical distributed key generation and applications to cryptocurrency custody. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 1837–1854. ACM Press, October 2018
Lindell, Y., Nof, A., Ranellucci, S.: Fast secure multiparty ECDSA with practical distributed key generation and applications to cryptocurrency custody. IACR Cryptology ePrint Archive 2018, 987 (2018). https://eprint.iacr.org/2018/987
Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen ciphertext attack. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 1–16. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054113
Smart, N.P.: Cryptography Made Simple. ISC. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-21936-3
Smart, N.P., Wood, T.: Error detection in monotone span programs with application to communication-efficient multi-party computation. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 210–229. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4_11
Waksman, A.: A permutation network. J. ACM 15(1), 159–163 (1968)
Acknowledgements
The authors would like to thank Tim Wood, for insightful discussions and suggestions. This work has been supported in part by ERC Advanced Grant ERC-2015-AdG-IMPaCT, by the Defense Advanced Research Projects Agency (DARPA) and Space and Naval Warfare Systems Center, Pacific (SSC Pacific) under contracts No. N66001-15-C-4070 and FA8750-19-C-0502, and by the FWO under an Odysseus project GOH9718N. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the ERC, DARPA or FWO.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Smart, N.P., Talibi Alaoui, Y. (2019). Distributing Any Elliptic Curve Based Protocol. In: Albrecht, M. (eds) Cryptography and Coding. IMACC 2019. Lecture Notes in Computer Science(), vol 11929. Springer, Cham. https://doi.org/10.1007/978-3-030-35199-1_17
Download citation
DOI: https://doi.org/10.1007/978-3-030-35199-1_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-35198-4
Online ISBN: 978-3-030-35199-1
eBook Packages: Computer ScienceComputer Science (R0)