[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Applying Self-interaction Attention for Extracting Drug-Drug Interactions

  • Conference paper
  • First Online:
AI*IA 2019 – Advances in Artificial Intelligence (AI*IA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11946))

Abstract

Discovering the effect of the simultaneous assumption of drugs is a very important field in medical research that could improve the effectiveness of healthcare and avoid adverse drug reactions which can cause health problems to patients. Although there are several pharmacological databases containing information on drugs, this type of information is often expressed in the form of free text. Analyzing sentences in order to extract drug-drug interactions was the objective of the DDIExtraction-2013 task. Despite the fact that the challenge took place six years ago, the interest on this task is still active and several new methods based on Recurrent Neural Networks and Attention Mechanisms have been designed. In this paper, we propose a model that combines bidirectional Long Short Term Memory (LSTM) networks with the Self-Interaction Attention Mechanism. Experimental analysis shows how this model improves the classification accuracy reducing the tendency to predict the majority class resulting in false negatives, over several input configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://spacy.io.

References

  1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate (2014). http://arxiv.org/abs/1409.0473. cite arxiv:1409.0473Comment. Accepted at ICLR 2015 as oral presentation

  2. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13(1), 281–305 (2012). http://dl.acm.org/citation.cfm?id=2503308.2188395

  3. Björne, J., Kaewphan, S., Salakoski, T.: UTurku: drug named entity recognition and drug-drug interaction extraction using SVM classification and domain knowledge. In: Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation, SemEval 2013, pp. 651–659. Association for Computational Linguistics, Atlanta, June 2013. https://www.aclweb.org/anthology/S13-2108

  4. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1724–1734. Association for Computational Linguistics, Doha, October 2014. https://doi.org/10.3115/v1/D14-1179, https://www.aclweb.org/anthology/D14-1179

  5. Chowdhury, M.F.M., Lavelli, A.: FBK-irst: a multi-phase kernel based approach for drug-drug interaction detection and classification that exploits linguistic information. In: Proceedings of the 7th International Workshop on Semantic Evaluation, SemEval@NAACL-HLT 2013, Atlanta, Georgia, USA, 14–15 June 2013, pp. 351–355 (2013). http://aclweb.org/anthology/S/S13/S13-2057.pdf

  6. Du, J., Han, J., Way, A., Wan, D.: Multi-level structured self-attentions for distantly supervised relation extraction. CoRR abs/1809.00699 (2018). http://arxiv.org/abs/1809.00699

  7. Gers, F.A., Schmidhuber, J., Cummins, F.A.: Learning to forget: continual prediction with LSTM. Neural Comput. 12, 2451–2471 (2000)

    Article  Google Scholar 

  8. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org

    MATH  Google Scholar 

  9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–80 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  10. Kadlec, R., Schmid, M., Bajgar, O., Kleindienst, J.: Text understanding with the attention sum reader network. CoRR abs/1603.01547 (2016)

    Google Scholar 

  11. Kumar, S., Anand, A.: Drug-drug interaction extraction from biomedical text using long short term memory network. CoRR abs/1701.08303 (2017)

    Google Scholar 

  12. Lee, J., et al.: BioBERT: pre-trained biomedical language representation model for biomedical text mining. arXiv preprint arXiv:1901.08746 (2019)

  13. Li, L., Guo, Y., Qian, S., Zhou, A.: An end-to-end entity and relation extraction network with multi-head attention. In: Sun, M., Liu, T., Wang, X., Liu, Z., Liu, Y. (eds.) CCL/NLP-NABD -2018. LNCS (LNAI), vol. 11221, pp. 136–146. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01716-3_12

    Chapter  Google Scholar 

  14. Li, Y., Yang, T.: Word embedding for understanding natural language: a survey. In: Srinivasan, S. (ed.) Guide to Big Data Applications. SBD, vol. 26, pp. 83–104. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-53817-4_4

    Chapter  Google Scholar 

  15. Liu, S., Tang, B., Chen, Q., Wang, X.: Drug-drug interaction extraction via convolutional neural networks. Comput. Math. Methods Med. 2016, 8 (2016)

    MATH  Google Scholar 

  16. Luong, M.T., Pham, H., Manning, C.D.: Effective approaches to attention-based neural machine translation. arXiv preprint arXiv:1508.04025 (2015)

  17. McDonald, R., Brokos, G., Androutsopoulos, I.: Deep relevance ranking using enhanced document-query interactions. CoRR abs/1809.01682 (2018)

    Google Scholar 

  18. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 26, pp. 3111–3119. Curran Associates, Inc. (2013). http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf

  19. Tarwani, K.M., Edem, S.: Survey on recurrent neural network in natural language processing. Int. J. Eng. Trends Technol. 48, 301–304 (2017). https://doi.org/10.14445/22315381/IJETT-V48P253

    Article  Google Scholar 

  20. Nagi, J., et al.: Max-pooling convolutional neural networks for vision-based hand gesture recognition. In: 2011 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), pp. 342–347, November 2011. https://doi.org/10.1109/ICSIPA.2011.6144164

  21. Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation. In: Proceedings of the 2014 conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)

    Google Scholar 

  22. Quan, C., Hua, L., Sun, X., Bai, W.: Multichannel convolutional neural network for biological relation extraction. BioMed. Res. Int. 2016, 10 (2016)

    Google Scholar 

  23. Raffel, C., Ellis, D.P.W.: Feed-forward networks with attention can solve some long-term memory problems. CoRR abs/1512.08756 (2015)

    Google Scholar 

  24. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Sig. Process. 45(11), 2673–2681 (1997)

    Article  Google Scholar 

  25. Segura-Bedmar, I., Martínez, P., Herrero-Zazo, M.: Lessons learnt from the DDIExtraction-2013 shared task. J. Biomed. Inform. 51, 152–164 (2014)

    Article  Google Scholar 

  26. Suárez-Paniagua, V., Segura-Bedmar, I.: Evaluation of pooling operations in convolutional architectures for drug-drug interaction extraction. BMC Bioinform. 19, 209 (2018). https://doi.org/10.1186/s12859-018-2195-1

    Article  Google Scholar 

  27. Vaswani, A., et al.: Attention is all you need. CoRR abs/1706.03762 (2017)

    Google Scholar 

  28. Weiss, G., Provost, F.: The effect of class distribution on classifier learning: an empirical study. Technical report, Department of Computer Science, Rutgers University (2001)

    Google Scholar 

  29. Wilcoxon, F.: Individual comparisons by ranking methods. Biom. Bull. 1(6), 80–83 (1945). http://www.jstor.org/stable/3001968

    Article  Google Scholar 

  30. Yi, Z., et al.: Drug-drug interaction extraction via recurrent neural network with multiple attention layers. In: Cong, G., Peng, W.-C., Zhang, W.E., Li, C., Sun, A. (eds.) ADMA 2017. LNCS (LNAI), vol. 10604, pp. 554–566. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69179-4_39

    Chapter  Google Scholar 

  31. Zeng, D., Liu, K., Lai, S., Zhou, G., Zhao, J.: Relation classification via convolutional deep neural network. In: Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers, pp. 2335–2344. Dublin City University and Association for Computational Linguistics, Dublin, August 2014. https://www.aclweb.org/anthology/C14-1220

  32. Zhang, Y., Zheng, W., Lin, H., Wang, J., Yang, Z., Dumontier, M.: Drug-drug interaction extraction via hierarchical RNNs on sequence and shortest dependency paths. Bioinformatics 34(5), 828–835 (2018)

    Article  Google Scholar 

  33. Zhang, Y., Qi, P., Manning, C.D.: Graph convolution over pruned dependency trees improves relation extraction. CoRR abs/1809.10185 (2018)

    Google Scholar 

  34. Zheng, J., Cai, F., Shao, T., Chen, H.: Self-interaction attention mechanism-based text representation for document classification. Appl. Sci. 8(4), 613 (2018). https://doi.org/10.3390/app8040613. http://www.mdpi.com/2076-3417/8/4/613

    Article  Google Scholar 

  35. Zheng, W., et al.: An attention-based effective neural model for drug-drug interactions extraction. BMC Bioinform. 18, 445 (2017). https://doi.org/10.1186/s12859-017-1855-x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luca Putelli , Alfonso E. Gerevini , Alberto Lavelli or Ivan Serina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Putelli, L., Gerevini, A.E., Lavelli, A., Serina, I. (2019). Applying Self-interaction Attention for Extracting Drug-Drug Interactions. In: Alviano, M., Greco, G., Scarcello, F. (eds) AI*IA 2019 – Advances in Artificial Intelligence. AI*IA 2019. Lecture Notes in Computer Science(), vol 11946. Springer, Cham. https://doi.org/10.1007/978-3-030-35166-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35166-3_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35165-6

  • Online ISBN: 978-3-030-35166-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics