[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Introducing Symmetry to Graph Rewriting Systems with Process Abstraction

  • Conference paper
  • First Online:
Graph Transformation (ICGT 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11629))

Included in the following conference series:

  • 442 Accesses

Abstract

Symmetry reduction in model checking is a technique for reducing state spaces by exploiting the inherent symmetry of models, i.e., the interchangeability of their subcomponents. Model abstraction, which abstracts away the details of models, often strengthens the symmetry of the models. Graph rewriting systems allow us to express models in such a way that inherent symmetry manifests itself with graph isomorphism of states. In graph rewriting, the synergistic effect of symmetry reduction and model abstraction is obtained under graph isomorphism. This paper proposes a method for abstracting programs described in a hierarchical graph rewriting language LMNtal. The method automatically finds and abstracts away subgraphs of a graph rewriting system that are irrelevant to the results of model checking. The whole framework is developed within the syntax and the formal semantics of the modeling language LMNtal without introducing new domains or languages. We show that the proposed abstraction method combined with symmetry reduction reduces state spaces while preserving the soundness of model checking. We implemented the method on SLIM, an implementation of LMNtal with an LTL model checker, tested it with various concurrent algorithms, and confirmed that it automatically reduces the number of states by successfully extracting the symmetry of models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    LMNtal homepage: https://www.ueda.info.waseda.ac.jp/lmntal/.

  2. 2.

    Available at https://github.com/lmntal/slim.

  3. 3.

    The details of this correspondence are beyond the scope of the present paper and not described here.

References

  1. Backes, P., Reineke, J.: Analysis of infinite-state graph transformation systems by cluster abstraction. In: D’Souza, D., Lal, A., Larsen, K.G. (eds.) VMCAI 2015. LNCS, vol. 8931, pp. 135–152. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46081-8_8

    Chapter  Google Scholar 

  2. Ben-Ari, M.: Principles of Concurrent and Distributed Programming. Addison-Wesley, Boston (2006)

    MATH  Google Scholar 

  3. Clarke, E.M., Enders, R., Filkorn, T., Jha, S.: Exploiting symmetry in temporal logic model checking. Form. Methods Syst. Des. 9(1), 77–104 (1996)

    Article  Google Scholar 

  4. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM Trans. Program. Lang. Syst. 16(5), 1512–1542 (1994)

    Article  Google Scholar 

  5. Donaldson, A.F., Miller, A.: A computational group theoretic symmetry reduction package for the Spin model checker. In: Johnson, M., Vene, V. (eds.) AMAST 2006. LNCS, vol. 4019, pp. 374–380. Springer, Heidelberg (2006). https://doi.org/10.1007/11784180_29

    Chapter  Google Scholar 

  6. Emerson, E.A., Havlicek, J.W., Trefler, R.J.: Virtual symmetry reduction. In: Proceedings o LICS 2000, pp. 121–131. IEEE Computer Society (2000)

    Google Scholar 

  7. Emerson, E.A., Sistla, A.P.: Symmetry and model checking. Form. Methods Syst. Des. 9(1–2), 105–131 (1996)

    Article  Google Scholar 

  8. Feret, J.: An algebraic approach for inferring and using symmetries in rule-based models. Electron. Notes Theor. Comput. Sci. 316, 45–65 (2015)

    Article  Google Scholar 

  9. Ghamarian, A.H., de Mol, M., Rensink, A., Zambon, E., Zimakova, M.: Modelling and analysis using GROOVE. STTT 14(1), 15–40 (2012)

    Article  Google Scholar 

  10. Gocho, M., Hori, T., Ueda, K.: Evolution of the LMNtal runtime to a parallel model checker. Comput. Softw. 28(4), 4\_137–4\_157 (2011)

    Google Scholar 

  11. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63166-6_10

    Chapter  Google Scholar 

  12. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual. Addison-Wesley Professional, Boston (2003)

    Google Scholar 

  13. Jensen, K.: Condensed state spaces for symmetrical coloured Petri Nets. Form. Methods Syst. Des. 9(1–2), 7–40 (1996)

    Article  Google Scholar 

  14. Junttila, T.: On the symmetry reduction method for Petri Nets and similar formalisms. Ph.D. thesis, Helsinki University of Technology (2003)

    Google Scholar 

  15. Miller, A., Donaldson, A.F., Calder, M.: Symmetry in temporal logic model checking. ACM Comput. Surv. 38(3), 8 (2006)

    Article  Google Scholar 

  16. Milner, R.: The Space and Motion of Communicating Agents. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  17. Norris, I.P.C., Dill, D.L.: Better verification through symmetry. Form. Methods Syst. Des. 9(1), 41–75 (1996)

    Article  Google Scholar 

  18. Rensink, A.: Isomorphism checking in GROOVE. Electron. Commun. EASST 1 (2006). https://doi.org/10.14279/tuj.eceasst.1.77

  19. Rensink, A., Distefano, D.: Abstract graph transformation. Electron. Notes Theor. Comput. Sci. 157(1), 39–59 (2006)

    Article  Google Scholar 

  20. Rozenberg, G.: Handbook of Graph Grammars and Computing by Graph Transformation. World Scientific, Singapore (1997)

    Book  Google Scholar 

  21. Schmidt, K.: Integrating low level symmetries into reachability analysis. In: Graf, S., Schwartzbach, M. (eds.) TACAS 2000. LNCS, vol. 1785, pp. 315–330. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46419-0_22

    Chapter  Google Scholar 

  22. Sistla, A.P., Godefroid, P.: Symmetry and reduced symmetry in model checking. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 91–103. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44585-4_9

    Chapter  Google Scholar 

  23. Sistla, A.P., Gyuris, V., Emerson, E.A.: SMC: a symmetry-based model checker for verification of safety and liveness properties. ACM Trans. Softw. Eng. Methodol. 9(2), 133–166 (2000)

    Article  Google Scholar 

  24. Ueda, K.: Encoding distributed process calculi into LMNtal. Electron. Notes Theor. Comput. Sci. 209, 187–200 (2008)

    Article  Google Scholar 

  25. Ueda, K.: Encoding the pure lambda calculus into hierarchical graph rewriting. In: Voronkov, A. (ed.) RTA 2008. LNCS, vol. 5117, pp. 392–408. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70590-1_27

    Chapter  MATH  Google Scholar 

  26. Ueda, K.: LMNtal as a hierarchical logic programming language. Theor. Comput. Sci. 410(46), 4784–4800 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank anonymous reviewers for their useful comments. This work was partially supported by Grant-in-Aid for Scientific Research (B) JP18H03223, JSPS, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taichi Tomioka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tomioka, T., Tsunekawa, Y., Ueda, K. (2019). Introducing Symmetry to Graph Rewriting Systems with Process Abstraction. In: Guerra, E., Orejas, F. (eds) Graph Transformation. ICGT 2019. Lecture Notes in Computer Science(), vol 11629. Springer, Cham. https://doi.org/10.1007/978-3-030-23611-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23611-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23610-6

  • Online ISBN: 978-3-030-23611-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics