[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Generalization of Linked Canonical Polyadic Tensor Decomposition for Group Analysis

  • Conference paper
  • First Online:
Advances in Neural Networks – ISNN 2019 (ISNN 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11555))

Included in the following conference series:

  • 2229 Accesses

Abstract

Real-world data are often linked with each other since they share some common characteristics. The mutual linking can be seen as a core driving force of group analysis. This study proposes a generalized linked canonical polyadic tensor decomposition (GLCPTD) model that is well suited to exploiting the linking nature in multi-block tensor analysis. To address GLCPTD model, an efficient algorithm based on hierarchical alternating least squa res (HALS) method is proposed, termed as GLCPTD-HALS algorithm. The proposed algorithm enables the simultaneous extraction of common components, individual components and core tensors from tensor blocks. Simulation experiments of synthetic EEG data analysis and image reconstruction and denoising were conducted to demonstrate the superior performance of the proposed generalized model and its realization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhou, G.-X., Zhao, Q.-B., Zhang, Y., et al.: Linked component analysis from matrices to high-order tensors: applications to biomedical data. Proc. IEEE. 104(2), 310–331 (2016). https://doi.org/10.1109/JPROC.2015.2474704

    Google Scholar 

  2. Sorensen, M., De Lathauwer, L.: Multidimensional harmonic retrieval via coupled canonical polyadic decomposition – part II: algorithm and multirate sampling. IEEE Trans. Signal Process. 65(2), 528–539 (2017). https://doi.org/10.1109/TSP.2016.2614797

    Google Scholar 

  3. Gong, X.-F., Lin, Q.-H., Cong, F.-Y., De Lathauwer, L.: Double coupled canonical polyadic decomposition for joint blind source separation. IEEE Trans. Signal Process. 66(13), 3475–3490 (2016). https://doi.org/10.1109/TSP.2018.2830317

    Google Scholar 

  4. Acar, E., Bro, R., Smilde, A.-K.: Data fusion in metabolomics using coupled matrix and tensor factorizations. Proc. IEEE. 103(9), 1602–1620 (2015). https://doi.org/10.1109/JPROC.2015.2438719

    Google Scholar 

  5. Zhou, G.-X., Cichocki, A., Xie, S.-L.: Fast nonnegative matrix/tensor factorization based on low-rank approximation. IEEE Trans. Signal Process. 60(6), 2928–2940 (2012). https://doi.org/10.1109/TSP.2012.2190410

    Google Scholar 

  6. Cong, F.-Y., Zhou, G.-X., Cichocki, A., et al.: Low-rank approximation based non-negative multi-way array decomposition on event-related potentials. Int. J. Neural Syst. 24(8), 1440005 (2014). https://doi.org/10.1142/S012906571440005X

    Google Scholar 

  7. Cichocki, A., Zdunek, R., Amari, S.: Hierarchical ALS algorithms for nonnegative matrix and 3D tensor factorization. In: Davies, M.E., James, C.J., Abdallah, S.A., Plumbley, M.D. (eds.) ICA 2007. LNCS, vol. 4666, pp. 169–176. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74494-8_22

    Google Scholar 

  8. Cong, F.-Y., Phan, A.-H., Zhao, Q.-B., et al.: Analysis of ongoing EEG elicited by natural music stimuli using nonnegative tensor factorization. In: 20th European Signal Processing Conference, pp. 494–498. Elsevier, Bucharest (2012)

    Google Scholar 

  9. Calhoun, V.-D., Liu, J., Adali, T.: A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. Neuroimage 45(1), 163–172 (2009). https://doi.org/10.1016/j.neuroimage.2008.10.057

    Google Scholar 

  10. Gong, X.-F., Wang, X.-L., Lin, Q.-H.: Generalized non-orthogonal joint diagonalization with LU decomposition and successive rotations. IEEE Trans. Signal Process. 63(5), 1322–1334 (2015). https://doi.org/10.1109/TSP.2015.2391074

    Google Scholar 

  11. Cichocki, A.: Tensor decompositions: a new concept in brain data analysis. arXiv Prepr. arXiv1305.0395 (2013)

    Google Scholar 

  12. Mørup, M.: Applications of tensor (multiway array) factorizations and decompositions in data mining. Wiley Interdisc. Rev.: Data Min. Knowl. Disc. 1(1), 24–40 (2011). https://doi.org/10.1002/widm.1

    Google Scholar 

  13. Cong, F.-Y., Lin, Q.-H., Kuang, L.-D., et al.: Tensor decomposition of EEG signals: a brief review. J. Neurosci. Methods 248, 59–69 (2015). https://doi.org/10.1016/j.jneumeth.2015.03.018

    Google Scholar 

  14. Yokota, T., Cichocki, A., Yamashita, Y.: Linked PARAFAC/CP tensor decomposition and its fast implementation for multi-block tensor analysis. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds.) ICONIP 2012. LNCS, vol. 7665, pp. 84–91. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34487-9_11

    Google Scholar 

  15. Hitchcock, F.-L.: The expression of a tensor or a polyadic as a sum of products. J. Math. Phys. 6(1–4), 164–189 (1927). https://doi.org/10.1002/sapm192761164

    Google Scholar 

  16. Harshman, R.-A.: Foundations of the PARAFAC procedure: models and conditions for an ‘explanatory’ multimodal factor analysis. UCLA Work. Pap. Phonetics. 16, 1–84 (1970)

    Google Scholar 

  17. Carroll, J.-D., Chang, J.-J.: Analysis of individual differences in multidimensional scaling via an n-way generalization of ‘Eckart-Young’ decomposition. Psychometrika 35(3), 283–319 (1970). https://doi.org/10.1007/BF02310791

    Google Scholar 

  18. Kolda, T.-G., Bader, B.-W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2008). https://doi.org/10.1137/07070111X

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 81471742), the Fundamental Research Funds for the Central Universities [DUT16JJ(G)03] in Dalian University of Technology in China, and the scholarships from China scholarship Council (No. 201706060262).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengyu Cong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, X., Zhang, C., Ristaniemi, T., Cong, F. (2019). Generalization of Linked Canonical Polyadic Tensor Decomposition for Group Analysis. In: Lu, H., Tang, H., Wang, Z. (eds) Advances in Neural Networks – ISNN 2019. ISNN 2019. Lecture Notes in Computer Science(), vol 11555. Springer, Cham. https://doi.org/10.1007/978-3-030-22808-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22808-8_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22807-1

  • Online ISBN: 978-3-030-22808-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics