Abstract
In the literature, there are several forms of extensions of the classical bi-implication for the fuzzy logic, as for example, the axiomatization proposed by Fodor and Roubens [1]. Another way to obtain a generalization is to provide a definition based on the classical equivalence \(\phi \iff \psi \equiv (\phi \Rightarrow \psi )\wedge (\psi \Rightarrow \phi )\), in which the classical operators of conjunction and implication are replaced, respectively, by a t-norm (T) and a fuzzy implication (I). In this paper, we investigate a particular class of fuzzy bi-implications \(B(x,y)=T(I(x,y),I(y,x))\), in which I is a fuzzy (T, N)-implication introduced by Bedregal [2]. We study several properties satisfied by (T, N)-bi-implications, such as the sufficient conditions that they must satisfy in order to be a f-bi-implication.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
If \(T:[0,1]^2\rightarrow [0,1]\) is a t-norm and \(N:[0,1]\rightarrow [0,1]\) is a fuzzy negation, then we say that the pair (T, N) satisfies the law of non-contradiction if \(T(x,N(x))=0\), for all \(x\in [0,1]\) (this law is equivalently stated in [11, p. 55]).
References
Fodor, J.C., Roubens, M.: Fuzzy Preference Modelling and Multicriteria Decision Support, vol. 14. Springer, Heidelberg (1994)
Bedregal, B.C.: A normal form which preserves tautologies and contradictions in a class of fuzzy logics. J. Algorithms 62(3), 135–147 (2007)
Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)
Hájek, P.: Metamathematics of Fuzzy Logic, vol. 4. Springer, Heidelberg (2013)
Behounek, L., Cintula, P., Hájek, P.: Introduction to Mathematical Fuzzy Logic. College Publications (2011). Ch. 1
Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms, vol. 8. Springer, Heidelberg (2000)
Klement, E., Mesiar, R., Pap, E.: Triangular norms. Position paper I: basic analytical and algebraic properties. Fuzzy Sets Syst. 143(1), 5–26 (2004)
Klement, E., Mesiar, R., Pap, E.: Triangular norms. Position paper II: general constructions and parameterized families. Fuzzy Sets Syst. 145(3), 411–438 (2004)
Klement, E., Mesiar, R., Pap, E.: Triangular norms. Position paper III: continuous t-norms. Fuzzy Sets Syst. 145(3), 439–454 (2004)
Bertei, A., Zanotelli, R., Cardoso, W., Reiser, R., Foss, L., Bedregal, B.: Correlation coefficient analysis based on fuzzy negations and representable automorphisms. In: 2016 IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2016, 24–29 July 2016, Vancouver, BC, Canada, pp. 127–132 (2016)
Baczyński, M., Jayaram, B.: Fuzzy Implications. Studies in Fuzziness and Soft Computing, vol. 231. Springer, Berlin (2008)
Mizumoto, M.: Fuzzy controls under various fuzzy reasoning methods. Inf. Sci. 45(2), 129–151 (1988)
Dalen, D.: Logic and Structure, 5th edn. Springer, Heidelberg (2013). Universitext
Kleene, S.: Mathematical Logic. Dover Books on Mathematics. Dover Publications, Mineola (2002)
Recasens, J.: Indistinguishability Operators: Modelling Fuzzy Equalities and Fuzzy Equivalence Relations, vol. 260. Springer, Heidelberg (2010)
Bodenhofer, U.: A compendium of fuzzy weak orders: representations and constructions. Fuzzy Sets Syst. 158(8), 811–829 (2007)
Bedregal, B.C., Cruz, A.P.: A characterization of classic-like fuzzy semantics. Logic J. IGPL 16(4), 357–370 (2008)
Novák, V., De Baets, B.: Eq-algebras. Fuzzy Sets Syst. 160(20), 2956–2978 (2009)
Mesiar, R., Novák, V.: Operations fitting triangular-norm-based biresiduation. Fuzzy Sets Syst. 104(1), 77–84 (1999)
Ćirić, M., Ignjatović, J., Bogdanović, S.: Fuzzy equivalence relations and their equivalence classes. Fuzzy Sets Syst. 158(12), 1295–1313 (2007)
Moser, B.: On the t-transitivity of kernels. Fuzzy Sets Syst. 157(13), 1787–1796 (2006)
Bustince, H., Barrenechea, E., Pagola, M.: Restricted equivalence functions. Fuzzy Sets Syst. 157(17), 2333–2346 (2006)
Callejas, C.: What is a fuzzy bi-implication? Master’s thesis, Universidade Federal do Rio Grande do Norte (2012)
Callejas, C., Marcos, J., Bedregal, B.R.C.: On some subclasses of the Fodor-Roubens fuzzy bi-implication. In: Proceedings of Logic, Language, Information and Computation - 19th International Workshop, WoLLIC 2012, 3–6 September 2012, Buenos Aires, Argentina, pp. 206–215 (2012)
Callejas, C., Marcos, J., Bedregal, B.: Actions of automorphisms on some classes of fuzzy bi-implications. Mathware Soft Comput. Mag. 20, 94–97 (2013)
Pinheiro, J., Bedregal, B., Santiago, R., Santos, H., Dimuro, G.P.: (T,N)-implications and some functional equations. In: Barreto, G.A., Coelho, R. (eds.) Fuzzy Information Processing, pp. 302–313. Springer, Cham (2018)
Pinheiro, J., Bedregal, B., Santiago, R.H., Santos, H.: A study of (T,N)-implications and its use to construct a new class of fuzzy subsethood measure. Int. J. Approximate Reason. 97, 1–16 (2018)
Pinheiro, J., Bedregal, B., Santiago, R.H.N., Santos, H.: (T, N)-implications. In: 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–6 (2017)
Bustince, H., Barrenechea, E., Pagola, M.: Image thresholding using restricted equivalence functions and maximizing the measures of similarity. Fuzzy Sets Syst. 158(5), 496–516 (2007)
Dimuro, G.P., Bedregal, B., Bustince, H., Jurio, A., Baczynski, M., Mis, K.: QL-operations and QL-implication functions constructed from tuples (O, G, N) and the generation of fuzzy subsethood and entropy measures. Int. J. Approximate Reason. 82, 170–192 (2017)
Acknowledgement
This work is partially supported by Universidade Federal Rural do Semi-Árido - UFERSA (Project PIH10002-2018).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Farias, A.D.S., Callejas, C., Marcos, J., Bedregal, B., Santiago, R. (2019). Fuzzy Bi-implications Generated by t-norms and Fuzzy Negations. In: Kearfott, R., Batyrshin, I., Reformat, M., Ceberio, M., Kreinovich, V. (eds) Fuzzy Techniques: Theory and Applications. IFSA/NAFIPS 2019 2019. Advances in Intelligent Systems and Computing, vol 1000. Springer, Cham. https://doi.org/10.1007/978-3-030-21920-8_53
Download citation
DOI: https://doi.org/10.1007/978-3-030-21920-8_53
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-21919-2
Online ISBN: 978-3-030-21920-8
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)