Abstract
Petri nets are a formalism for modelling and reasoning about the behaviour of distributed systems. Recently, a reversible approach to Petri nets, Reversing Petri Nets (RPN), has been proposed, allowing transitions to be reversed spontaneously in or out of causal order. In this work we propose an approach for controlling the reversal of actions of an RPN, by associating transitions with conditions whose satisfaction/violation allows the execution of transitions in the forward/reversed direction, respectively. We illustrate the framework with a model of a novel, distributed algorithm for antenna selection in distributed antenna arrays.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Danos, V., Krivine, J.: Reversible communicating systems. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28644-8_19
Danos, V., Krivine, J.: Transactions in RCCS. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 398–412. Springer, Heidelberg (2005). https://doi.org/10.1007/11539452_31
Phillips, I., Ulidowski, I.: Reversing algebraic process calculi. In: Aceto, L., Ingólfsdóttir, A. (eds.) FoSSaCS 2006. LNCS, vol. 3921, pp. 246–260. Springer, Heidelberg (2006). https://doi.org/10.1007/11690634_17
Lanese, I., Lienhardt, M., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Concurrent flexible reversibility. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 370–390. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37036-6_21
Lanese, I., Mezzina, C.A., Stefani, J.: Reversibility in the higher-order \(\pi \)-calculus. Theor. Comput. Sci. 625, 25–84 (2016)
Cardelli, L., Laneve, C.: Reversible structures. In: Proceedings of CMSB 2011, pp. 131–140. ACM (2011)
Ulidowski, I., Phillips, I., Yuen, S.: Concurrency and reversibility. In: Yamashita, S., Minato, S. (eds.) RC 2014. LNCS, vol. 8507, pp. 1–14. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08494-7_1
Barylska, K., Koutny, M., Mikulski, Ł., Piątkowski, M.: Reversible computation vs. reversibility in Petri nets. In: Devitt, S., Lanese, I. (eds.) RC 2016. LNCS, vol. 9720, pp. 105–118. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40578-0_7
Philippou, A., Psara, K.: Reversible computation in Petri nets. In: Kari, J., Ulidowski, I. (eds.) RC 2018. LNCS, vol. 11106, pp. 84–101. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99498-7_6
Barylska, K., Gogolinska, A., Mikulski, L., Philippou, A., Piatkowski, M., Psara, K.: Reversing computations modelled by coloured Petri nets. In: Proceedings of ATAED 2018, vol. 2115, pp. 91–111. CEUR Workshop Proceedings (2018)
Lanese, I., Mezzina, C.A., Stefani, J.-B.: Controlled reversibility and compensations. In: Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS, vol. 7581, pp. 233–240. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36315-3_19
Phillips, I., Ulidowski, I., Yuen, S.: A reversible process calculus and the modelling of the ERK signalling pathway. In: Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS, vol. 7581, pp. 218–232. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36315-3_18
Lanese, I., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Controlling reversibility in higher-order Pi. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 297–311. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23217-6_20
Bacci, G., Danos, V., Kammar, O.: On the statistical thermodynamics of reversible communicating processes. In: Corradini, A., Klin, B., Cîrstea, C. (eds.) CALCO 2011. LNCS, vol. 6859, pp. 1–18. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22944-2_1
Jensen, K., Kristensen, L.M.: Coloured Petri Nets - Modelling and Validation of Concurrent Systems. Springer, Heidelberg (2009). https://doi.org/10.1007/b95112
Gao, X., Edfors, O., Tufvesson, F., Larsson, E.G.: Massive mimo in real propagation environments: do all antennas contribute equally? IEEE Trans. Commun. 63(11), 3917–3928 (2015)
Siljak, H., Psara, K., Philippou, A.: Distributed antenna selection for massive MIMO using reversing Petri nets. IEEE Wirel. Commun. Lett. (2019, under review)
Acknowledgments
This work was partially supported by the European COST Action IC 1405: Reversible Computation - Extending Horizons of Computing, Science Foundation Ireland (SFI) and European Regional Development Fund under Grant Number 13/RC/2077, and the EU Horizon 2020 research & innovation programme under the Marie Sklodowska-Curie grant agreement No 713567.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Philippou, A., Psara, K., Siljak, H. (2019). Controlling Reversibility in Reversing Petri Nets with Application to Wireless Communications. In: Thomsen, M., Soeken, M. (eds) Reversible Computation. RC 2019. Lecture Notes in Computer Science(), vol 11497. Springer, Cham. https://doi.org/10.1007/978-3-030-21500-2_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-21500-2_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-21499-9
Online ISBN: 978-3-030-21500-2
eBook Packages: Computer ScienceComputer Science (R0)