[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

The Method for Improving the Quality of Information Retrieval Based on Linguistic Analysis of Search Query

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2019)

Abstract

The paper describes the process of research and development of methods for linguistic analysis of search queries. Linguistic analysis of search query is used to improve the quality of information retrieval. Original search query translated to a search query in a new format after syntactic analysis. Using the features of query language allow improving the quality of information retrieval. Also, the paper describes the results of experiments that confirm the correctness of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Voorhees, E.M.: Natural language processing and information retrieval. In: Pazienza, M.T. (ed.) Information Extraction. LNCS (LNAI), vol. 1714, pp. 32–48. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48089-7_3

    Chapter  Google Scholar 

  2. Manning, C., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  3. Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., Singer, Y.: Online passive-aggressive algorithms. JMLR 7(Mar), 551–585 (2006)

    MathSciNet  MATH  Google Scholar 

  4. Turney P.: Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. In: Proceedings of the Association for Computational Linguistics, pp. 417–424 (2002)

    Google Scholar 

  5. VKontakte. https://vk.com/. Accessed 20 Oct 2018

  6. Gruber, T.: Ontology. http://tomgruber.org/writing/ontology-in-encyclopedia-of-dbs.pdf. Accessed 20 Oct 2018

  7. Elasticsearch. https://www.elastic.co/. Accessed 20 Oct 2018

  8. MongoDB. https://www.mongodb.com/. Accessed 20 Oct 2018

  9. Neo4j. https://neo4j.com/. Accessed 20 Oct 2018

  10. Yarushkina, N., Filippov, A., Moshkin, V.: Development of the unified technological plat-form for constructing the domain knowledge base through the context analysis. In: Kravets, A., Shcherbakov, M., Kultsova, M., Groumpos, P. (eds.) CIT&DS 2017. CCIS, vol. 754, pp. 62–72. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65551-2_5

    Chapter  Google Scholar 

  11. Elasticsearch Query DSL. https://www.elastic.co/guide/en/elasticsearch/reference/2.3/query-dsl-query-string-query.html. Accessed 20 Oct 2018

  12. SRILM - The SRI Language Modeling Toolkit. http://www.speech.sri.com/projects/srilm. Accessed 20 Oct 2018

  13. Manning, C., Schutze, H.: Foundations of Statistical Language processing. The MIT Press, Cambridge (1999)

    MATH  Google Scholar 

  14. Sboev, A.G., Gudovskikh, D.V., Ivanov, I., Moloshnikov, I.A., Rybka, R.B., Voronina, I.: Research of a deep learning neural network effectiveness for a morphological parser of Russian language (2017). http://www.dialog-21.ru/media/3944/sboevagetal.pdf. Accessed 20 Oct 2018

  15. Ulyanovsk. https://en.wikipedia.org/wiki/Ulyanovsk. Accessed 20 Oct 2018

Download references

Acknowledgments

The study was supported by:

– the Ministry of Education and Science of the Russian Federation in the framework of the project No. 2.1182.2017/4.6. Development of methods and means for automation of production and technological preparation of aggregate-assembly aircraft production in the conditions of a multi-product production program;

– the Russian Foundation for Basic Research (Grants No. 18-47-732007 and 18-47-730019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim Moshkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yarushkina, N., Filippov, A., Grigoricheva, M., Moshkin, V. (2019). The Method for Improving the Quality of Information Retrieval Based on Linguistic Analysis of Search Query. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2019. Lecture Notes in Computer Science(), vol 11509. Springer, Cham. https://doi.org/10.1007/978-3-030-20915-5_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20915-5_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20914-8

  • Online ISBN: 978-3-030-20915-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics