Abstract
The paper describes the process of research and development of methods for linguistic analysis of search queries. Linguistic analysis of search query is used to improve the quality of information retrieval. Original search query translated to a search query in a new format after syntactic analysis. Using the features of query language allow improving the quality of information retrieval. Also, the paper describes the results of experiments that confirm the correctness of the method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Voorhees, E.M.: Natural language processing and information retrieval. In: Pazienza, M.T. (ed.) Information Extraction. LNCS (LNAI), vol. 1714, pp. 32–48. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48089-7_3
Manning, C., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)
Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., Singer, Y.: Online passive-aggressive algorithms. JMLR 7(Mar), 551–585 (2006)
Turney P.: Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. In: Proceedings of the Association for Computational Linguistics, pp. 417–424 (2002)
VKontakte. https://vk.com/. Accessed 20 Oct 2018
Gruber, T.: Ontology. http://tomgruber.org/writing/ontology-in-encyclopedia-of-dbs.pdf. Accessed 20 Oct 2018
Elasticsearch. https://www.elastic.co/. Accessed 20 Oct 2018
MongoDB. https://www.mongodb.com/. Accessed 20 Oct 2018
Neo4j. https://neo4j.com/. Accessed 20 Oct 2018
Yarushkina, N., Filippov, A., Moshkin, V.: Development of the unified technological plat-form for constructing the domain knowledge base through the context analysis. In: Kravets, A., Shcherbakov, M., Kultsova, M., Groumpos, P. (eds.) CIT&DS 2017. CCIS, vol. 754, pp. 62–72. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65551-2_5
Elasticsearch Query DSL. https://www.elastic.co/guide/en/elasticsearch/reference/2.3/query-dsl-query-string-query.html. Accessed 20 Oct 2018
SRILM - The SRI Language Modeling Toolkit. http://www.speech.sri.com/projects/srilm. Accessed 20 Oct 2018
Manning, C., Schutze, H.: Foundations of Statistical Language processing. The MIT Press, Cambridge (1999)
Sboev, A.G., Gudovskikh, D.V., Ivanov, I., Moloshnikov, I.A., Rybka, R.B., Voronina, I.: Research of a deep learning neural network effectiveness for a morphological parser of Russian language (2017). http://www.dialog-21.ru/media/3944/sboevagetal.pdf. Accessed 20 Oct 2018
Ulyanovsk. https://en.wikipedia.org/wiki/Ulyanovsk. Accessed 20 Oct 2018
Acknowledgments
The study was supported by:
– the Ministry of Education and Science of the Russian Federation in the framework of the project No. 2.1182.2017/4.6. Development of methods and means for automation of production and technological preparation of aggregate-assembly aircraft production in the conditions of a multi-product production program;
– the Russian Foundation for Basic Research (Grants No. 18-47-732007 and 18-47-730019).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Yarushkina, N., Filippov, A., Grigoricheva, M., Moshkin, V. (2019). The Method for Improving the Quality of Information Retrieval Based on Linguistic Analysis of Search Query. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2019. Lecture Notes in Computer Science(), vol 11509. Springer, Cham. https://doi.org/10.1007/978-3-030-20915-5_43
Download citation
DOI: https://doi.org/10.1007/978-3-030-20915-5_43
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-20914-8
Online ISBN: 978-3-030-20915-5
eBook Packages: Computer ScienceComputer Science (R0)