[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

The Problems of Selecting Problems

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11507))

Included in the following conference series:

Abstract

We face several teaching problems where a set of exercises has to be selected based on their capability to make students discover typical misconceptions or their capability to evaluate the knowledge of the students. We consider four different optimization problems, developed from two basic decision problems. The first two optimization problems consist in selecting a set of exercises reaching some required levels of coverage for each topic. In the first problem we minimize the total time required to present the selected exercises, whereas the surplus coverage of topics is maximized in the second problem. The other two optimization problems consist in composing an exam in such a way that each student misconception reduces the overall mark of the exam to some specific required extent. In particular, we consider the problem of minimizing the size of the exam fulfilling these mark reduction constraints, and the problem of minimizing the differences between the required marks losses due to each misconception and the actual ones in the composed exam. For each optimization problem, we formally identify its approximation hardness and we heuristically solve it by using a genetic algorithm. We report experimental results for a case study based on a set of real exercises of Discrete Mathematics, a Computer Science degree subject.

This work has been partially supported by Spanish project TIN2015-67522-C3-3-R, the UCM project PIMCD 2016_176, and by Comunidad de Madrid as part of the programs S2013/ICE-2731 (NGREENS-CM), and S2018/TCS-4339 (BLOQUES-CM) co-funded by EIE Funds of the European Union.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ausiello, G., Paschos, V.Th.: Reductions that preserve approximability. In: Handbook of Approximation Algorithms and Metaheuristics: Methologies and Traditional Applications, vol. 1 (2018)

    Google Scholar 

  2. Birattari, M.: Tuning Metaheuristics. A Machine Learning Perspective, vol. 197. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00483-4

    Book  MATH  Google Scholar 

  3. Chen, S.-H.: Genetic Algorithms and Genetic Programming in Computational Finance. Springer, Heidelberg (2012)

    Google Scholar 

  4. Crescenzi, P.: A short guide to approximation preserving reductions. In: Proceedings of the 12th IEEE Conference on Computational Complexity, pp. 262–273. IEEE (1997)

    Google Scholar 

  5. Dasgupta, D., Michalewicz, Z.: Evolutionary Algorithms in Engineering Applications. Springer, Heidelberg (2013)

    MATH  Google Scholar 

  6. de Jong, K.: Evolutionary Computation: A Unified Approach. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  7. de la Encina, A., Hidalgo-Herrero, M., Rabanal, P., Rubio, F.: A parallel skeleton for genetic algorithms. In: Cabestany, J., Rojas, I., Joya, G. (eds.) IWANN 2011. LNCS, vol. 6692, pp. 388–395. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21498-1_49

    Chapter  Google Scholar 

  8. Feige, U.: A threshold of ln n for approximating set cover. J. ACM (JACM) 45(4), 634–652 (1998)

    Article  Google Scholar 

  9. Hidalgo-Herrero, M., Rodríguez, I., Rubio, F.: Testing learning strategies. In: Fourth IEEE Conference on Cognitive Informatics 2005, (ICCI 2005), pp. 212–221. IEEE (2005)

    Google Scholar 

  10. Hidalgo-Herrero, M., Rodríguez, I., Rubio, F.: Comparing learning methods. Int. J. Cogn. Inf. Nat. Intell. (IJCINI) 3(3), 12–26 (2009)

    Article  Google Scholar 

  11. Kolliopoulos, S.G., Young, N.E.: Approximation algorithms for covering/packing integer programs. J. Comput. Syst. Sci. 71, 495–505 (2005)

    Article  MathSciNet  Google Scholar 

  12. Kratsch, S., Marx, D., Wahlström, M.: Parameterized complexity and kernelizability of max ones and exact ones problems. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 489–500. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15155-2_43

    Chapter  MATH  Google Scholar 

  13. Kratsch, S., Wahlström, M.: Preprocessing of min ones problems: a dichotomy. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 653–665. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14165-2_55

    Chapter  Google Scholar 

  14. Man, K.F., Tang, K.S., Kwong, S.: Genetic Algorithms for Control and Signal Processing. Springer, Heidelberg (2012)

    Google Scholar 

  15. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  16. Oreski, S., Oreski, G.: Genetic algorithm-based heuristic for feature selection in credit risk assessment. Expert Syst. Appl. 41(4), 2052–2064 (2014)

    Article  Google Scholar 

  17. Pal, S.K., Wang, P.P.: Genetic Algorithms for Pattern Recognition. CRC Press, Boca Raton (2017)

    Book  Google Scholar 

  18. Paschos, V.Th.: An overview on polynomial approximation of NP-hard problems. Yugoslav J. Oper. Res. 19(1), 3–40 (2009)

    Article  MathSciNet  Google Scholar 

  19. Rabanal, P., Rodríguez, I., Rubio, F.: On the uselessness of finite benchmarks to assess evolutionary and Swarm methods. In: Proceedings of the Companion Genetic and Evolutionary Computation Conference, GECCO 2015, pp. 1461–1462. ACM (2015)

    Google Scholar 

  20. Rabanal, P., Rodríguez, I., Rubio, F.: Assessing metaheuristics by means of random benchmarks. Procedia Comput. Sci. 80, 289–300 (2016)

    Article  Google Scholar 

  21. Rodríguez, I., Rabanal, P., Rubio, F.: How to make a best-seller: optimal product design problems. Appl. Soft Comput. 55(C), 178–196 (2017)

    Article  Google Scholar 

  22. Rodríguez, I., Rubio, F., Rabanal, P.: Automatic media planning: optimal advertisement placement problems. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 5170–5177. IEEE (2016)

    Google Scholar 

  23. Sastry, K., Goldberg, D.E., Kendall, G.: Genetic algorithms. In: Burke, E., Kendall, G. (eds.) Search Methodologies, pp. 93–117. Springer, Heidelberg (2014). https://doi.org/10.1007/978-1-4614-6940-7_4

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Rubio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de la Encina, A., López, N., Rodríguez, I., Rubio, F. (2019). The Problems of Selecting Problems. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2019. Lecture Notes in Computer Science(), vol 11507. Springer, Cham. https://doi.org/10.1007/978-3-030-20518-8_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20518-8_63

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20517-1

  • Online ISBN: 978-3-030-20518-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics