[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Neural Network-Based Approach to Sensor and Actuator Fault-Tolerant Control

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2019)

Abstract

The paper is devoted to the problem of design of robust estimator and controller on the basis of the neural-network model represented in a linear parameter-varying form. In particular the fault-tolerant controller for multiple sensor and actuator faults is developed. The proposed approach is able to minimise the influence of the multiple faults of sensor as well as actuator on the controlled system. The robust estimator and robust controller procedure boil down to solving a set of linear matrix inequalities. The illustrative part of the paper is devoted to the application of the proposed approach to fault tolerant control of the laboratory multi-tank system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alessandri, A., Baglietto, M., Battistelli, G.: Design of state estimators for uncertain linear systems using quadratic boundedness. Automatica 42(3), 497–502 (2006)

    Article  MathSciNet  Google Scholar 

  2. Cayero, J., Rotondo, D., Morcego, B., Puig, V.: Optimal state observation using quadratic boundedness: application to UAV disturbance estimation. Int. J. Appl. Math. Comput. Sci. 29(1), 99–109 (2019)

    Article  Google Scholar 

  3. Chen, L., Patton, R., Goupil, P.: Robust fault estimation using an LPV reference model: addsafe benchmark case study. Control Eng. Pract. 49, 194–203 (2016)

    Article  Google Scholar 

  4. de Oliveira, M.C., Bernussou, J., Geromel, J.C.: A new discrete-time robust stability condition. Syst. Control Lett. 37(4), 261–265 (1999)

    Article  MathSciNet  Google Scholar 

  5. Ding, B.: Dynamic output feedback predictive control for nonlinear systems represented by a Takagi-Sugeno model. IEEE Trans. Fuzzy Syst. 19(5), 831–843 (2011)

    Article  Google Scholar 

  6. Foo, G.H.B., Zhang, X., Vilathgamuwa, D.M.: A sensor fault detection and isolation method in interior permanent-magnet synchronous motor drives based on an extended Kalman filter. IEEE Trans. Ind. Electron. 60(8), 3485–3495 (2013)

    Article  Google Scholar 

  7. Gillijns, S., De Moor, B.: Unbiased minimum-variance input and state estimation for linear discrete-time systems. Automatica 43(1), 111–116 (2007)

    Article  MathSciNet  Google Scholar 

  8. Haykin, S.: Neural Networks and Learning Machines, vol. 3. Pearson, Upper Saddle River (2009)

    Google Scholar 

  9. INTECO. Multitank System - User’s manual (2013). www.inteco.com.pl

  10. Khalil, H.K., Praly, L.: High-gain observers in nonlinear feedback control. Int. J. Robust Nonlinear Control 24(6), 993–1015 (2014)

    Article  MathSciNet  Google Scholar 

  11. Mrugalski, M.: Advanced Neural Network-Based Computational Schemes for Robust Fault Diagnosis. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-01547-7

    Book  MATH  Google Scholar 

  12. Mrugalski, M., Luzar, M., Pazera, M., Witczak, M., Aubrun, C.: Neural network-based robust actuator fault diagnosis for a non-linear multi-tank system. ISA Trans. 61, 318–328 (2016)

    Article  Google Scholar 

  13. Nelles, O.: Non-linear Systems Identification. From Classical Approaches to Neural Networks and Fuzzy Models. Springer, Berlin (2001). https://doi.org/10.1007/978-3-662-04323-3

    Book  MATH  Google Scholar 

  14. Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: high confidence predictions for unrecognizable images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 427–436 (2015)

    Google Scholar 

  15. Nobrega, E.G., Abdalla, M.O., Grigoriadis, K.M.: Robust fault estimation of uncertain systems using an LMI-based approach. Int. J. Robust Nonlinear Control 18(18), 1657–1680 (2008)

    Article  MathSciNet  Google Scholar 

  16. Noura, H., Theilliol, D., Ponsart, J.C., Chamseddine, A.: Fault-tolerant Control Systems: Design and Practical Applications. Springer, London (2009). https://doi.org/10.1007/978-1-84882-653-3

    Book  MATH  Google Scholar 

  17. Pazera, M., Buciakowski, M., Witczak, M.: Robust multiple sensor fault-tolerant control for dynamic non-linear systems: application to the aerodynamical twin-rotor system. Int. J. Appl. Math. Comput. Sci. 28(2), 297–308 (2018)

    Article  MathSciNet  Google Scholar 

  18. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Education Limited, Malaysia (2016)

    MATH  Google Scholar 

  19. Witczak, M., Buciakowski, M., Puig, V., Rotondo, D., Nejjari, F.: An LMI approach to robust fault estimation for a class of nonlinear systems. Int. J. Robust Nonlinear Control 26(7), 1530–1548 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Science Centre, Poland under grant: UMO-2017/27/B/ST7/00620.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Mrugalski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pazera, M., Mrugalski, M., Witczak, M., Buciakowski, M. (2019). A Neural Network-Based Approach to Sensor and Actuator Fault-Tolerant Control. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2019. Lecture Notes in Computer Science(), vol 11507. Springer, Cham. https://doi.org/10.1007/978-3-030-20518-8_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20518-8_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20517-1

  • Online ISBN: 978-3-030-20518-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics