Abstract
The paper is devoted to the problem of design of robust estimator and controller on the basis of the neural-network model represented in a linear parameter-varying form. In particular the fault-tolerant controller for multiple sensor and actuator faults is developed. The proposed approach is able to minimise the influence of the multiple faults of sensor as well as actuator on the controlled system. The robust estimator and robust controller procedure boil down to solving a set of linear matrix inequalities. The illustrative part of the paper is devoted to the application of the proposed approach to fault tolerant control of the laboratory multi-tank system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alessandri, A., Baglietto, M., Battistelli, G.: Design of state estimators for uncertain linear systems using quadratic boundedness. Automatica 42(3), 497–502 (2006)
Cayero, J., Rotondo, D., Morcego, B., Puig, V.: Optimal state observation using quadratic boundedness: application to UAV disturbance estimation. Int. J. Appl. Math. Comput. Sci. 29(1), 99–109 (2019)
Chen, L., Patton, R., Goupil, P.: Robust fault estimation using an LPV reference model: addsafe benchmark case study. Control Eng. Pract. 49, 194–203 (2016)
de Oliveira, M.C., Bernussou, J., Geromel, J.C.: A new discrete-time robust stability condition. Syst. Control Lett. 37(4), 261–265 (1999)
Ding, B.: Dynamic output feedback predictive control for nonlinear systems represented by a Takagi-Sugeno model. IEEE Trans. Fuzzy Syst. 19(5), 831–843 (2011)
Foo, G.H.B., Zhang, X., Vilathgamuwa, D.M.: A sensor fault detection and isolation method in interior permanent-magnet synchronous motor drives based on an extended Kalman filter. IEEE Trans. Ind. Electron. 60(8), 3485–3495 (2013)
Gillijns, S., De Moor, B.: Unbiased minimum-variance input and state estimation for linear discrete-time systems. Automatica 43(1), 111–116 (2007)
Haykin, S.: Neural Networks and Learning Machines, vol. 3. Pearson, Upper Saddle River (2009)
INTECO. Multitank System - User’s manual (2013). www.inteco.com.pl
Khalil, H.K., Praly, L.: High-gain observers in nonlinear feedback control. Int. J. Robust Nonlinear Control 24(6), 993–1015 (2014)
Mrugalski, M.: Advanced Neural Network-Based Computational Schemes for Robust Fault Diagnosis. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-01547-7
Mrugalski, M., Luzar, M., Pazera, M., Witczak, M., Aubrun, C.: Neural network-based robust actuator fault diagnosis for a non-linear multi-tank system. ISA Trans. 61, 318–328 (2016)
Nelles, O.: Non-linear Systems Identification. From Classical Approaches to Neural Networks and Fuzzy Models. Springer, Berlin (2001). https://doi.org/10.1007/978-3-662-04323-3
Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: high confidence predictions for unrecognizable images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 427–436 (2015)
Nobrega, E.G., Abdalla, M.O., Grigoriadis, K.M.: Robust fault estimation of uncertain systems using an LMI-based approach. Int. J. Robust Nonlinear Control 18(18), 1657–1680 (2008)
Noura, H., Theilliol, D., Ponsart, J.C., Chamseddine, A.: Fault-tolerant Control Systems: Design and Practical Applications. Springer, London (2009). https://doi.org/10.1007/978-1-84882-653-3
Pazera, M., Buciakowski, M., Witczak, M.: Robust multiple sensor fault-tolerant control for dynamic non-linear systems: application to the aerodynamical twin-rotor system. Int. J. Appl. Math. Comput. Sci. 28(2), 297–308 (2018)
Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Education Limited, Malaysia (2016)
Witczak, M., Buciakowski, M., Puig, V., Rotondo, D., Nejjari, F.: An LMI approach to robust fault estimation for a class of nonlinear systems. Int. J. Robust Nonlinear Control 26(7), 1530–1548 (2015)
Acknowledgements
The work was supported by the National Science Centre, Poland under grant: UMO-2017/27/B/ST7/00620.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Pazera, M., Mrugalski, M., Witczak, M., Buciakowski, M. (2019). A Neural Network-Based Approach to Sensor and Actuator Fault-Tolerant Control. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2019. Lecture Notes in Computer Science(), vol 11507. Springer, Cham. https://doi.org/10.1007/978-3-030-20518-8_43
Download citation
DOI: https://doi.org/10.1007/978-3-030-20518-8_43
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-20517-1
Online ISBN: 978-3-030-20518-8
eBook Packages: Computer ScienceComputer Science (R0)