[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Towards Automatic Crack Detection by Deep Learning and Active Thermography

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2019)

Abstract

Metal joining processes are crucial in current technological devices. To grant the quality of the weldings is the key to ensure a long life cycle of a component. This work faces crack detection in Electron-Bean Welding (EBW) and Tungsten Inert Gas (TIG) weldings using Inductive Thermography with the aim to substitute traditional Non-Destructive Testing (NDT) inspection techniques. The novel method presented in this work can be divided up into two main phases. The first one corresponds to the thermographic inspection, where the thermographic recordings are reconstructed and processed, whereas the second one deals with cracks detection. Last phase is a Convolutional Neural Network inspired in the well-known VGG model which segments the thermographic information, detecting accurately where the cracks are. The thermographic inspection has been complemented with measurements in an optical microscope, showing a good correlation between the experimental and the prediction of this novel solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.robots.ox.ac.uk/~vgg/research/very_deep/.

References

  1. Stankovičová, Z., Dekýš, V., Nový, F., Novák, P.: Nondestructive testing of metal parts by using infrared camera. Procedia Eng. 177, 562–567 (2017). XXI Polish-Slovak Scientific Conference Machine Modeling and Simulations MMS 2016. September 6–8, 2016, Hucisko, Poland

    Article  Google Scholar 

  2. Srajbr, C., Dillenz, A., Bräutigam, K.: Crack detection at aluminum fuselages by induction excited thermography. In: 4th International Symposium on NDT in Aerospace 2012 - Th.3.A.3 (2012)

    Google Scholar 

  3. Srajbr, C.: Induction excited thermography in industrial applications. In: 19th World Conference on Non-Destructive Testing 2016 (2016)

    Google Scholar 

  4. Netzelmann, U., Walle, G., Lugin, S., Ehlen, A., Bessert, S., Valeske, B.: Induction thermography: principle, applications and first steps towards standardisation. Quant. InfraRed Thermography J. 13(2), 170–181 (2016)

    Article  Google Scholar 

  5. Gorostegui-Colinas, E., Muniategui, A., de Uralde, P.L., Gorosmendi, I., Hériz, B., Sabalza, X.: A novel automatic defect detection method for electron beam welded inconel 718 components using inductive thermography. In: 14th Quantitative InfraRed Thermography Conference (2018)

    Google Scholar 

  6. Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., Martinez-Gonzalez, P., Garcia-Rodriguez, J.: A survey on deep learning techniques for image and video semantic segmentation. Appl. Soft Comput. 70, 41–65 (2018)

    Article  Google Scholar 

  7. Gu, J., et al.: Recent advances in convolutional neural networks. Pattern Recogn. 77, 354–377 (2018)

    Article  Google Scholar 

  8. Simpson, A.J.R.: Over-sampling in a deep neural network. CoRR, vol. abs/1502.03648 (2015)

    Google Scholar 

  9. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? CoRR, vol. abs/1411.1792 (2014)

    Google Scholar 

  10. Oswald-Tranta, B.: Thermoinductive investigations of magnetic materials for surface cracks. Quant. InfraRed Thermography J. 1(1), 33–46 (2004)

    Article  Google Scholar 

  11. Oswald-Tranta, B., Wally, G.: Thermo-Inductive Surface Crack Detection in Metallic Parts (2006)

    Google Scholar 

  12. Oswald-Tranta, B., Sorger, M.: Localizing surface cracks with inductive thermographical inspection: from measurement to image processing. Quant. InfraRed Thermography J. 8(2), 149–164 (2011)

    Article  Google Scholar 

  13. JM, T., TJ, G., RM, G.: Retinopathy. JAMA 298(8), 944 (2007)

    Article  Google Scholar 

  14. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR, vol. abs/1409.1556 (2014)

    Google Scholar 

  15. Park, B., Matsushita, M.: Estimating comic content from the book cover information using fine-tuned VGG model for comic search. In: Kompatsiaris, I., Huet, B., Mezaris, V., Gurrin, C., Cheng, W.-H., Vrochidis, S. (eds.) MMM 2019. LNCS, vol. 11296, pp. 650–661. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05716-9_58

    Chapter  Google Scholar 

  16. Sengupta, A., Ye, Y., Wang, R., Liu, C., Roy, K.: Going deeper in spiking neural networks: VGG and residual architectures. Front. Neurosci. 13, 95–95 (2019)

    Article  Google Scholar 

  17. Wu, S., Liu, C., Wang, Z., Wu, S., Xiao, K.: Regression with support vector machines and VGG neural networks. In: Hassanien, A.E., Azar, A.T., Gaber, T., Bhatnagar, R., F. Tolba, M. (eds.) AMLTA 2019. AISC, vol. 921, pp. 301–311. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-14118-9_30

    Chapter  Google Scholar 

  18. Mateen, M., Wen, J., Nasrullah, Song, S., Huang, Z.: Fundus image classification using VGG-19 architecture with PCA and SVD. Symmetry 11, 1 (2019)

    Article  Google Scholar 

  19. Liskowski, P., Krawiec, K.: Segmenting retinal blood vessels with deep neural networks. IEEE Trans. Med. Imaging 35, 2369–2380 (2016)

    Article  Google Scholar 

Download references

Akcnowledgements

This work has been funded by the project KK-2018/00104 (Departamento de Desarrollo Económico e Infraestructuras del Gobierno Vasco, Programa ELKARTEK-Convovatoria 2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramón Moreno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moreno, R., Gorostegui-Colinas, E., de Uralde, P.L., Muniategui, A. (2019). Towards Automatic Crack Detection by Deep Learning and Active Thermography. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2019. Lecture Notes in Computer Science(), vol 11507. Springer, Cham. https://doi.org/10.1007/978-3-030-20518-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20518-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20517-1

  • Online ISBN: 978-3-030-20518-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics