Abstract
The research demonstrates the use of hidden Markov models (HMMs) in analyzing fixation data recorded by an eye-tracker. The visual activity was registered while performing pairwise comparisons of simple marketing messages. The marketing information was presented in a form of digital leaflets appearing on a computer screen and differed in the components’ arrangement and graphical layout. Better variants were selected by clicking on them with a mouse. A simulation experiment was performed to determine best HMMs in terms of information criteria. Seven selected models were presented in detail, four of them graphically illustrated and thoroughly analyzed. The identified hidden states along with predicted transition and emission probabilities allowed for the description of possible subjects’ visual behavior. Hypotheses about relations between these strategies and marketing message design factors were also put forward and discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Grebitus, C., Roosen, J.: Influence of non-attendance on choices with varying complexity. Eur. J. Mark. 52(9/10), 2151–2172 (2018). https://doi.org/10.1108/EJM-02-2017-0143
Muñoz Leiva, F., Liébana-Cabanillas, F., Hernández-Méndez, J.: Etourism advertising effectiveness: banner type and engagement as moderators. J. Serv. Mark. 32(4), 462–475 (2018). https://doi.org/10.1108/JSM-01-2017-0039
Michalski, R., Grobelny, J.: An eye tracking based examination of visual attention during pairwise comparisons of a digital product’s package. In: UAHCI 2016. Part I. LNCS, vol. 9737, pp. 430–441 (2016). https://doi.org/10.1007/978-3-319-40250-5_41
Michalski, R.: Information presentation compatibility in the simple digital control panel design – eye-tracking study. Int. J. Occup. Saf. Ergon. (2017). https://doi.org/10.1080/10803548.2017.1317469
Ozkan, F., Ulutas, H.B.: Using eye-tracking data to evaluate medicine information leaflets on-screen. J. Math. Stat. Sci. 3(12), 364–376 (2017)
Huddleston, P.T., Behe, B.K., Driesener, C., Minahan, S.: Inside-outside: using eye-tracking to investigate search-choice processes in the retail environment. J. Retail. Consum. Serv. 43, 85–93 (2018). https://doi.org/10.1016/j.jretconser.2018.03.006
Findlay, J.M., Gilchrist, I.D.: Active vision. The psychology of looking and seeing. Oxford University Press, New York (2003)
Ellis, S.R., Stark, L.: Statistical dependency in visual scanning. Hum. Factors: J. Hum. Factors Ergon. Soc. 28(4), 421–438 (1986). https://doi.org/10.1177/001872088602800405
Hayashi, M.: Hidden Markov models to identify pilot instrument scanning and attention patterns. In: 2003 IEEE International Conference on Systems, Man and Cybernetics, vol. 3, pp. 2889–2896 (2003). https://doi.org/10.1109/ICSMC.2003.1244330
Liechty, J., Pieters, R., Wedel, M.: Global and local covert visual attention: evidence from a Bayesian hidden Markov model. Psychometrika 68(4), 519–541 (2003). https://doi.org/10.1007/BF02295608
Simola, J., Salojärvi, J., Kojo, I.: Using hidden Markov model to uncover processing states from eye movements in information search tasks. Cogn. Syst. Res. 9(4), 237–251 (2008). https://doi.org/10.1016/j.cogsys.2008.01.002
Chuk, T., Chan, A.B., Hsiao, J.H.: Understanding eye movements in face recognition using hidden Markov models. J. Vis. 14(11), 1–14 (2014). https://doi.org/10.1167/14.11.8
Grobelny, J., Michalski, R.: Applying hidden Markov models to visual activity analysis for simple digital control panel operations. In: Proceedings of 37th International Conference on Information Systems Architecture and Technology. ISAT 2016, Part III, Advances in Intelligent Systems on Computing, vol. 523 (2017). https://doi.org/10.1007/978-3-319-46589-0_1
Grobelny J., Michalski R.: Zastosowanie modeli Markowa z ukrytymi stanami do analizy aktywności wzrokowej w procesie oceny wirtualnych opakowań techniką porównywania parami. Zeszyty Naukowe Politechniki Poznańskiej. Organizacja i Zarządzanie, vol. 73, pp. 111–125 (2017). https://doi.org/10.21008/j.0239-9415.2017.073.08
Michalski, R., Ogar, A.: Wpływ struktury graficznej prostych ulotek reklamowych na preferencje potencjalnych klientów - badanie okulograficzne. Zeszyty Naukowe Politechniki Poznańskiej. Organizacja i Zarządzanie (2019). http://www.zeszyty.fem.put.poznan.pl/
Markov, A.A.: An example of statistical investigation of the text Eugene Onegin concerning the connection of samples in chains. Bull. Imperial Acad. Sci. St. Petersburg 7(3), 153–162 (1913). (in Russian). Unpublished English translation by Morris Halle (1955). Nitussov, A.Y., Voro-pai, L., Custance, G., Link, D. (trans.): Science in Context 19(4), 591–600 (2006)
Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77(2), 257–286 (1989). https://doi.org/10.1109/5.18626
TIBCO Software Inc.: Statistica (data analysis software system), version 13 (2017). http://statistica.io
Baum, L.E.: An inequality and associated maximization technique in statistical estimation for probabilistic functions of Markov processes. In: Shisha, O. (ed.). Proceedings of the 3rd Symposium on Inequalities, pp. 1–8. University of California, Los Angeles (1972)
Murphy, K.: Hidden Markov Model (HMM) Toolbox for Matlab (1998, 2005). www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html
Mathworks: Matlab (R2018b) (2018). http://www.mathworks.com
Akaike, H.: Information theory as an extension of the maximum likelihood theory. In: Petrov, B.N., Csaki, F. (eds.) Second International Symposium on Information Theory, pp. 267–281. Akademiai Kiado, Budapest (1973)
Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978). https://doi.org/10.1214/aos/1176344136
Jeannerod, M., Gerin, P., Pernier, J.: Deplacements et fixations du regard dans l’exploration libre d’une scene visuelle. Vis. Res. 8, 81–97 (1968)
Chédru, F., Leblanc, M., Lhermitte, F.: Visual searching in normal and brain-damaged subjects (contribution to the study of unilateral inattention). Cortex 9(1), 94–111 (1973)
Simion, F., Valenza, E., Cassia, V.M., Turati, C., Umiltà, C.: Newborns’ preference for up–down asymmetrical configurations. Dev. Sci. 5(4), 427–434 (2002). https://doi.org/10.1111/1467-7687.00237
Eriksen, C.W., James, J.D.S.: Visual attention within and around the field of focal attention: a zoom lens model. Percept. Psychophys. 40(4), 225–240 (1986). https://doi.org/10.3758/BF03211502
Acknowledgments
The research was partially financially supported by Polish National Science Centre Grant No. 2017/27/B/HS4/01876.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Grobelny, J., Michalski, R. (2020). Investigating Human Visual Behavior by Hidden Markov Models in the Design of Marketing Information. In: Cassenti, D. (eds) Advances in Human Factors and Simulation. AHFE 2019. Advances in Intelligent Systems and Computing, vol 958. Springer, Cham. https://doi.org/10.1007/978-3-030-20148-7_22
Download citation
DOI: https://doi.org/10.1007/978-3-030-20148-7_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-20147-0
Online ISBN: 978-3-030-20148-7
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)