[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Investigating Human Visual Behavior by Hidden Markov Models in the Design of Marketing Information

  • Conference paper
  • First Online:
Advances in Human Factors and Simulation (AHFE 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 958))

Included in the following conference series:

Abstract

The research demonstrates the use of hidden Markov models (HMMs) in analyzing fixation data recorded by an eye-tracker. The visual activity was registered while performing pairwise comparisons of simple marketing messages. The marketing information was presented in a form of digital leaflets appearing on a computer screen and differed in the components’ arrangement and graphical layout. Better variants were selected by clicking on them with a mouse. A simulation experiment was performed to determine best HMMs in terms of information criteria. Seven selected models were presented in detail, four of them graphically illustrated and thoroughly analyzed. The identified hidden states along with predicted transition and emission probabilities allowed for the description of possible subjects’ visual behavior. Hypotheses about relations between these strategies and marketing message design factors were also put forward and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Grebitus, C., Roosen, J.: Influence of non-attendance on choices with varying complexity. Eur. J. Mark. 52(9/10), 2151–2172 (2018). https://doi.org/10.1108/EJM-02-2017-0143

    Article  Google Scholar 

  2. Muñoz Leiva, F., Liébana-Cabanillas, F., Hernández-Méndez, J.: Etourism advertising effectiveness: banner type and engagement as moderators. J. Serv. Mark. 32(4), 462–475 (2018). https://doi.org/10.1108/JSM-01-2017-0039

    Article  Google Scholar 

  3. Michalski, R., Grobelny, J.: An eye tracking based examination of visual attention during pairwise comparisons of a digital product’s package. In: UAHCI 2016. Part I. LNCS, vol. 9737, pp. 430–441 (2016). https://doi.org/10.1007/978-3-319-40250-5_41

    Google Scholar 

  4. Michalski, R.: Information presentation compatibility in the simple digital control panel design – eye-tracking study. Int. J. Occup. Saf. Ergon. (2017). https://doi.org/10.1080/10803548.2017.1317469

    Article  MathSciNet  Google Scholar 

  5. Ozkan, F., Ulutas, H.B.: Using eye-tracking data to evaluate medicine information leaflets on-screen. J. Math. Stat. Sci. 3(12), 364–376 (2017)

    Google Scholar 

  6. Huddleston, P.T., Behe, B.K., Driesener, C., Minahan, S.: Inside-outside: using eye-tracking to investigate search-choice processes in the retail environment. J. Retail. Consum. Serv. 43, 85–93 (2018). https://doi.org/10.1016/j.jretconser.2018.03.006

    Article  Google Scholar 

  7. Findlay, J.M., Gilchrist, I.D.: Active vision. The psychology of looking and seeing. Oxford University Press, New York (2003)

    Book  Google Scholar 

  8. Ellis, S.R., Stark, L.: Statistical dependency in visual scanning. Hum. Factors: J. Hum. Factors Ergon. Soc. 28(4), 421–438 (1986). https://doi.org/10.1177/001872088602800405

    Article  Google Scholar 

  9. Hayashi, M.: Hidden Markov models to identify pilot instrument scanning and attention patterns. In: 2003 IEEE International Conference on Systems, Man and Cybernetics, vol. 3, pp. 2889–2896 (2003). https://doi.org/10.1109/ICSMC.2003.1244330

  10. Liechty, J., Pieters, R., Wedel, M.: Global and local covert visual attention: evidence from a Bayesian hidden Markov model. Psychometrika 68(4), 519–541 (2003). https://doi.org/10.1007/BF02295608

    Article  MathSciNet  MATH  Google Scholar 

  11. Simola, J., Salojärvi, J., Kojo, I.: Using hidden Markov model to uncover processing states from eye movements in information search tasks. Cogn. Syst. Res. 9(4), 237–251 (2008). https://doi.org/10.1016/j.cogsys.2008.01.002

    Article  Google Scholar 

  12. Chuk, T., Chan, A.B., Hsiao, J.H.: Understanding eye movements in face recognition using hidden Markov models. J. Vis. 14(11), 1–14 (2014). https://doi.org/10.1167/14.11.8

    Article  Google Scholar 

  13. Grobelny, J., Michalski, R.: Applying hidden Markov models to visual activity analysis for simple digital control panel operations. In: Proceedings of 37th International Conference on Information Systems Architecture and Technology. ISAT 2016, Part III, Advances in Intelligent Systems on Computing, vol. 523 (2017). https://doi.org/10.1007/978-3-319-46589-0_1

    Google Scholar 

  14. Grobelny J., Michalski R.: Zastosowanie modeli Markowa z ukrytymi stanami do analizy aktywności wzrokowej w procesie oceny wirtualnych opakowań techniką porównywania parami. Zeszyty Naukowe Politechniki Poznańskiej. Organizacja i Zarządzanie, vol. 73, pp. 111–125 (2017). https://doi.org/10.21008/j.0239-9415.2017.073.08

  15. Michalski, R., Ogar, A.: Wpływ struktury graficznej prostych ulotek reklamowych na preferencje potencjalnych klientów - badanie okulograficzne. Zeszyty Naukowe Politechniki Poznańskiej. Organizacja i Zarządzanie (2019). http://www.zeszyty.fem.put.poznan.pl/

  16. Markov, A.A.: An example of statistical investigation of the text Eugene Onegin concerning the connection of samples in chains. Bull. Imperial Acad. Sci. St. Petersburg 7(3), 153–162 (1913). (in Russian). Unpublished English translation by Morris Halle (1955). Nitussov, A.Y., Voro-pai, L., Custance, G., Link, D. (trans.): Science in Context 19(4), 591–600 (2006)

    Google Scholar 

  17. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77(2), 257–286 (1989). https://doi.org/10.1109/5.18626

    Article  Google Scholar 

  18. TIBCO Software Inc.: Statistica (data analysis software system), version 13 (2017). http://statistica.io

  19. Baum, L.E.: An inequality and associated maximization technique in statistical estimation for probabilistic functions of Markov processes. In: Shisha, O. (ed.). Proceedings of the 3rd Symposium on Inequalities, pp. 1–8. University of California, Los Angeles (1972)

    Google Scholar 

  20. Murphy, K.: Hidden Markov Model (HMM) Toolbox for Matlab (1998, 2005). www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html

  21. Mathworks: Matlab (R2018b) (2018). http://www.mathworks.com

  22. Akaike, H.: Information theory as an extension of the maximum likelihood theory. In: Petrov, B.N., Csaki, F. (eds.) Second International Symposium on Information Theory, pp. 267–281. Akademiai Kiado, Budapest (1973)

    Google Scholar 

  23. Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978). https://doi.org/10.1214/aos/1176344136

    Article  MathSciNet  MATH  Google Scholar 

  24. Jeannerod, M., Gerin, P., Pernier, J.: Deplacements et fixations du regard dans l’exploration libre d’une scene visuelle. Vis. Res. 8, 81–97 (1968)

    Article  Google Scholar 

  25. Chédru, F., Leblanc, M., Lhermitte, F.: Visual searching in normal and brain-damaged subjects (contribution to the study of unilateral inattention). Cortex 9(1), 94–111 (1973)

    Article  Google Scholar 

  26. Simion, F., Valenza, E., Cassia, V.M., Turati, C., Umiltà, C.: Newborns’ preference for up–down asymmetrical configurations. Dev. Sci. 5(4), 427–434 (2002). https://doi.org/10.1111/1467-7687.00237

    Article  Google Scholar 

  27. Eriksen, C.W., James, J.D.S.: Visual attention within and around the field of focal attention: a zoom lens model. Percept. Psychophys. 40(4), 225–240 (1986). https://doi.org/10.3758/BF03211502

    Article  Google Scholar 

Download references

Acknowledgments

The research was partially financially supported by Polish National Science Centre Grant No. 2017/27/B/HS4/01876.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafał Michalski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grobelny, J., Michalski, R. (2020). Investigating Human Visual Behavior by Hidden Markov Models in the Design of Marketing Information. In: Cassenti, D. (eds) Advances in Human Factors and Simulation. AHFE 2019. Advances in Intelligent Systems and Computing, vol 958. Springer, Cham. https://doi.org/10.1007/978-3-030-20148-7_22

Download citation

Publish with us

Policies and ethics