[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Abstract

The generalized self-shrinking generator (or generalized generator) produces binary sequences (generalized sequences) with good cryptographic properties. On the other hand, the binomial sequences can be obtained considering infinite successions of binomial coefficients modulo 2. It is possible to see that the generalized sequences can be computed as a finite binary sum of binomial sequences. Besides, the cryptographic parameters of the generalized sequences can be studied in terms of the binomial sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cardell, S.D., Fúster-Sabater, A.: Linear models for the self-shrinking generator based on CA. J. Cell. Automata 11(2–3), 195–211 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Cardell, S.D., Fúster-Sabater, A.: Recovering the MSS-sequence via CA. Procedia Comput. Sci. 80, 599–606 (2016)

    Article  Google Scholar 

  3. Cardell, S.D., Fúster-Sabater, A.: Modelling the shrinking generator in terms of linear CA. Adv. Math. Commun. 10(4), 797–809 (2016)

    Article  MathSciNet  Google Scholar 

  4. Cardell, S.D., Fúster-Sabater, A.: The t-Modified self-shrinking generator. In: Shi, Y., et al. (eds.) ICCS 2018. Lecture Notes in Computer Science, vol. 10860, pp. 653–663. Springer, Cham (2018)

    Google Scholar 

  5. Coppersmith, D., Krawczyk, H., Mansour, Y.: The shrinking generator. In: Proceedings of CRYPTO 1993, Lecture Notes in Computer Science, vol. 773, pp. 22–39. Springer (1994)

    Google Scholar 

  6. Fúster-Sabater, A., García-Mochales, P.: A simple computational model for acceptance/rejection of binary sequence generators. Appl. Math. Model. 31(8), 1548–1558 (2007)

    Article  Google Scholar 

  7. Fúster-Sabater, A., Caballero-Gil, P.: Chaotic modelling of the generalized self-shrinking generator. Appl. Soft Comput. 11(2), 1876–1880 (2011)

    Article  Google Scholar 

  8. Fúster-Sabater, A.: Generation of cryptographic sequences by means of difference equations. Appl. Math. Inf. Sci. 8(2), 1–10 (2014)

    MathSciNet  Google Scholar 

  9. Golomb, S.W.: Shift Register-Sequences. Aegean Park Press, Laguna Hill (1982)

    MATH  Google Scholar 

  10. Hu, Y., Xiao, G.: Generalized self-shrinking generator. IEEE Trans. Inf. Theor. 50(4), 714–719 (2004)

    Article  MathSciNet  Google Scholar 

  11. Kanso, A.: Modified self-shrinking generator. Comput. Electr. Eng. 36(1), 993–1001 (2010)

    Article  Google Scholar 

  12. Meier, W., Staffelbach, O.: The self-shrinking generator. In: Cachin, C., Camenisch, J. (eds.) Advances in Cryptology – EUROCRYPT 1994, Lecture Notes in Computer Science, vol. 950, pp. 205–214. Springer (1994)

    Google Scholar 

  13. Menezes, A.J., et al.: Handbook of Applied Cryptography. CRC Press, New York (1997)

    MATH  Google Scholar 

  14. Paar, C., Pelzl, J.: Understanding Cryptography. Springer, Berlin (2010)

    Book  Google Scholar 

Download references

Acknowledgements

Research partially supported by Ministerio de Economía, Industria y Competitividad, Agencia Estatal de Investigación, and Fondo Europeo de Desarrollo Regional (FEDER, UE) under project COPCIS (TIN2017-84844-C2-1-R) and by Comunidad de Madrid (Spain) under project CYNAMON (P2018/TCS-4566), also co-funded by European Union FEDER funds. The first author was supported by CAPES (Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara D. Cardell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cardell, S.D., Fúster-Sabater, A. (2020). Linearization of Cryptographic Sequences. In: Martínez Álvarez, F., Troncoso Lora, A., Sáez Muñoz, J., Quintián, H., Corchado, E. (eds) International Joint Conference: 12th International Conference on Computational Intelligence in Security for Information Systems (CISIS 2019) and 10th International Conference on EUropean Transnational Education (ICEUTE 2019). CISIS ICEUTE 2019 2019. Advances in Intelligent Systems and Computing, vol 951. Springer, Cham. https://doi.org/10.1007/978-3-030-20005-3_17

Download citation

Publish with us

Policies and ethics