Abstract
The generalized self-shrinking generator (or generalized generator) produces binary sequences (generalized sequences) with good cryptographic properties. On the other hand, the binomial sequences can be obtained considering infinite successions of binomial coefficients modulo 2. It is possible to see that the generalized sequences can be computed as a finite binary sum of binomial sequences. Besides, the cryptographic parameters of the generalized sequences can be studied in terms of the binomial sequences.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cardell, S.D., Fúster-Sabater, A.: Linear models for the self-shrinking generator based on CA. J. Cell. Automata 11(2–3), 195–211 (2016)
Cardell, S.D., Fúster-Sabater, A.: Recovering the MSS-sequence via CA. Procedia Comput. Sci. 80, 599–606 (2016)
Cardell, S.D., Fúster-Sabater, A.: Modelling the shrinking generator in terms of linear CA. Adv. Math. Commun. 10(4), 797–809 (2016)
Cardell, S.D., Fúster-Sabater, A.: The t-Modified self-shrinking generator. In: Shi, Y., et al. (eds.) ICCS 2018. Lecture Notes in Computer Science, vol. 10860, pp. 653–663. Springer, Cham (2018)
Coppersmith, D., Krawczyk, H., Mansour, Y.: The shrinking generator. In: Proceedings of CRYPTO 1993, Lecture Notes in Computer Science, vol. 773, pp. 22–39. Springer (1994)
Fúster-Sabater, A., García-Mochales, P.: A simple computational model for acceptance/rejection of binary sequence generators. Appl. Math. Model. 31(8), 1548–1558 (2007)
Fúster-Sabater, A., Caballero-Gil, P.: Chaotic modelling of the generalized self-shrinking generator. Appl. Soft Comput. 11(2), 1876–1880 (2011)
Fúster-Sabater, A.: Generation of cryptographic sequences by means of difference equations. Appl. Math. Inf. Sci. 8(2), 1–10 (2014)
Golomb, S.W.: Shift Register-Sequences. Aegean Park Press, Laguna Hill (1982)
Hu, Y., Xiao, G.: Generalized self-shrinking generator. IEEE Trans. Inf. Theor. 50(4), 714–719 (2004)
Kanso, A.: Modified self-shrinking generator. Comput. Electr. Eng. 36(1), 993–1001 (2010)
Meier, W., Staffelbach, O.: The self-shrinking generator. In: Cachin, C., Camenisch, J. (eds.) Advances in Cryptology – EUROCRYPT 1994, Lecture Notes in Computer Science, vol. 950, pp. 205–214. Springer (1994)
Menezes, A.J., et al.: Handbook of Applied Cryptography. CRC Press, New York (1997)
Paar, C., Pelzl, J.: Understanding Cryptography. Springer, Berlin (2010)
Acknowledgements
Research partially supported by Ministerio de Economía, Industria y Competitividad, Agencia Estatal de Investigación, and Fondo Europeo de Desarrollo Regional (FEDER, UE) under project COPCIS (TIN2017-84844-C2-1-R) and by Comunidad de Madrid (Spain) under project CYNAMON (P2018/TCS-4566), also co-funded by European Union FEDER funds. The first author was supported by CAPES (Brazil).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Cardell, S.D., Fúster-Sabater, A. (2020). Linearization of Cryptographic Sequences. In: Martínez Álvarez, F., Troncoso Lora, A., Sáez Muñoz, J., Quintián, H., Corchado, E. (eds) International Joint Conference: 12th International Conference on Computational Intelligence in Security for Information Systems (CISIS 2019) and 10th International Conference on EUropean Transnational Education (ICEUTE 2019). CISIS ICEUTE 2019 2019. Advances in Intelligent Systems and Computing, vol 951. Springer, Cham. https://doi.org/10.1007/978-3-030-20005-3_17
Download citation
DOI: https://doi.org/10.1007/978-3-030-20005-3_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-20004-6
Online ISBN: 978-3-030-20005-3
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)